RODO + DALEX, kilka słów o moim referacie na DSS


W przyszły piątek (8 czerwca) na wydziale MiNI PW odbędzie się konferencja Data Science Summit.
W sali 107 pomiędzy 10:50 a 11:20 ma miejsce mój referat Wyjaśnij! Jak budować wyjaśnialne modele ML / AI i jak to się ma do RODO?, na który serdecznie zapraszam.

Planuję opowiedzieć o temacie, który wciąga mnie coraz bardziej, czyli wyjaśnialnym AI (XAI). Jak to się ma do RODO i o co chodzi z pogłoskami o ,,prawie do wyjaśnienia”?

To będzie techniczny referat (sorry, żadnych zdjęć kotów czy psów, być może jakieś zdjęcia robotów). Pokażę jak konstruować i używać wykresy breakDown (i powiem dlaczego są lepsze niż LIME czy wartości Shapleya), będzie też mowa o najnowszym wyniku naszego zespołu, czyli wykresach What-If.

Osoby zainteresowane tematem, ale nie planujące udziału w konferencji, zapraszam do lektury dokumentacji DALEXa.

Btw: Na konferencji DSS planowany jest hackaton ,,Conquer urban data”, organizowany przez dr Marcina Lucknera. Hataton wykorzystujący dane z API Warszawy. Warto tam zajrzeć.

Maraton Analizy Danych, czyli niedzielna notatka z pamiętnika nauczyciela akademickiego


Miałem dzisiaj przyjemność uczestniczyć w pracach jury podczas Maratonu Analizy Danych, wydarzenia zorganizowanego przez koło SNK Data Science Management z SGH. Hakaton trwał 24h, a po maratonie były jeszcze 3h prezentacji. W maratonie wzięły udział zespoły głównie z UW, PW i SGH, choć byli też uczestnicy z innych uczelni, również spoza Warszawy.

Przestrzeń na hakaton bardzo przyjemna (Mysia 3), organizacja świetna (ale czy czegoś innego można się spodziewać po kole z SGH?). To był jeden z bardzo nielicznych hakatonów, w którym duży nacisk położono na faktyczną analizę danych.

Takie imprezy robią na mnie duże wrażenie. Młodzi ludzie, przez cały dzień i całą noc walczą z jakimś problemem, a później jeszcze mają siłę pokazać wyniki innym zespołom.
Ach te studenckie czasy!
Wśród rozwiązań dominował R i Python, sporo było map (oczywiście leaflet), były aplikacje Shiny, a nawet w prezentacjach pojawił się jakiś PowerBI. Od strony metodologicznej dało się wyczuć dwa rodzaje podejść, nazwijmy je umownie podejściem maszynowym (jak model to random forest albo xgboost) i statystycznym (aż po statystykę Morana dla danych przestrzennych). To już same w sobie było świetne, uczestnicy zostali wystawieni na nowe (dla części z nich) algorytmy i podejścia do analizy danych.

Lubię takie wydarzenia, ponieważ pokazują jakie kompetencje posiadają najaktywniejsi studenci (ech, to spaczone spojrzenie nauczyciela akademickiego).
Od strony narzędziowej zespoły prezentowały bardzo wysoki poziom (a to studenci I i II stopnia), niesamowite co udało się zrobić w 24h. Od strony prezentacyjnej poziom też był wysoki. Czytelne sensowne przedstawianie problemu i rozwiązania. Były zespoły, które zdążyły zrobić i analizę i aplikację webową i bardzo graficznie dopracowaną prezentację. Znacznie wyższy poziom niż +-10 lat temu gdy prezentacje projektów bywały drętwe.

Ponieważ jestem człowiekiem, dla którego do szklanki zawsze można jeszcze trochę dolać, więc i tutaj zastanawiałem się jakie kompetencje dotyczące analizy danych można by dalej rozwinąć.

I wyszło mi, że wąskim gardłem było najczęściej samo określenie problemu do rozwiązania. Często (a pisząc często rozszerzam to i na inne znane mi hakatony i na znane mi projekty uczelniane) analiza danych jest ,,data-driven” a nie ,,problem-driven”.
Wychodzi się od dostępnego zbioru danych i zastanawia jaki by tu problem z tych danych rozwiązać. W konsekwencji gdy już wydaje się, że ten problem się rozwiązało, okazuje się, że te dane niespecjalnie się do tego problemu nadawały. Czy to z powodu agregacji, czy zakresów czy czegoś innego.
Pozostawia to pewien niedosyt. Widać było ciekawy problem, widać było wysiłek i umiejętności, ale rozwiązanie nie jest w pełni satysfakcjonujące z uwagi na ,,zniewolenie myślenia przez te konkretne dane”. Rozwiązanie nie jest wymuskane, lśniące, pachnące itp.
Potraktowałbym to jako wskazówkę dla prowadzących przedmioty projektowe na uczeniach, by większy nacisk włożyć na krytyczną ocenę potencjału wykorzystania określonego źródła danych.

Tak czy inaczej Maraton Analizy Danych był fantastycznym wydarzeniem pełnym pozytywnej energii. To była pierwsza edycja, oby były kolejne.
Najbliższy hakaton związany z analizą danych odbędzie się za dwa tygodnie, podczas konferencji Data Science Summit (nasza fundacja jest partnerem!).
Z pewnością też tam będę 😉

ML models: What they can’t learn?

What I love in conferences are the people, that come after your talk and say: It would be cool to add XYZ to your package/method/theorem.

After the eRum (great conference by the way) I was lucky to hear from Tal Galili: It would be cool to use DALEX for teaching, to show how different ML models are learning relations.

Cool idea. So let’s see what can and what cannot be learned by the most popular ML models. Here we will compare random forest against linear models against SVMs.
Find the full example here. We simulate variables from uniform U[0,1] distribution and calculate y from following equation

In all figures below we compare PDP model responses against the true relation between variable x and the target variable y (pink color). All these plots are created with DALEX package.

For x1 we can check how different models deal with a quadratic relation. The linear model fails without prior feature engineering, random forest is guessing the shape but the best fit if found by SVMs.

With sinus-like oscillations the story is different. SVMs are not that flexible while random forest is much closer.

Turns out that monotonic relations are not easy for these models. The random forest is close but event here we cannot guarantee the monotonicity.

The linear model is the best one when it comes to truly linear relation. But other models are not that far.

The abs(x) is not an easy case for neither model.

Find the R codes here.

Of course the behavior of all these models depend on number of observation, noise to signal ratio, correlation among variables and interactions.
Yet is may be educational to use PDP curves to see how different models are learning relations. What they can grasp easily and what they cannot.

DALEX @ eRum 2018

DALEX invasion has started with the workshop and talk @ eRum 2018.

Find workshop materials at DALEX: Descriptive mAchine Learning EXplanations. Tools for exploration, validation and explanation of complex machine learning models (thanks Mateusz Staniak for having the second part of the workshop).

And my presentation Show my your model 2.0! (thanks go to the whole MI2DataLab for contributions and Malgorzata Pawlak for great stickers).