Not only LIME

I’ve heard about a number of consulting companies, that decided to use simple linear model instead of a black box model with higher performance, because ,,client wants to understand factors that drive the prediction’’.
And usually the discussion goes as following: ,,We have tried LIME for our black-box model, it is great, but it is not working in our case’’, ,,Have you tried other explainers?’’, ,,What other explainers’’?

So here you have a map of different visual explanations for black-box models. Choose one in (on average) less than three simple steps.

These are available in the DALEX package. Feel free to propose other visual explainers that should be added to this map (and the package).

Ceteris Paribus Plots – a new DALEX companion

If you like magical incantations in Data Science, please welcome the Ceteris Paribus Plots. Otherwise feel free to call them What-If Plots.

Ceteris Paribus (latin for all else unchanged) Plots explain complex Machine Learning models around a single observation. They supplement tools like breakDown, Shapley values, LIME or LIVE. In addition to feature importance/feature attribution, now we can see how the model response changes along a specific variable, keeping all other variables unchanged.

How cancer-risk-scores change with age? How credit-scores change with salary? How insurance-costs change with age?

Well, use the ceterisParibus package to generate plots like the one below.
Here we have an explanation for a random forest model that predicts apartments prices. Presented profiles are prepared for a single observation marked with dashed lines (130m2 apartment on 3rd floor). From these profiles one can read how the model response is linked with particular variables.

Instead of original values on the OX scale one can plot qunatiles. This way one can put all variables in a single plot.

And once all variables are in the same scale, one can compare two or more models.

Yes, they are model agnostic and will work for any model!
Yes, they can be interactive (see plot_interactive function or examples below)!
And yes, you can use them with other DALEX explainers!
More examples with R code.