DALEX has a new skin! Learn how it was designed at gdansk2019.satRdays

DALEX is an R package for visual explanation, exploration, diagnostic and debugging of predictive ML models (aka XAI – eXplainable Artificial Intelligence). It has a bunch of visual explainers for different aspects of predictive models. Some of them are useful during model development some for fine tuning, model diagnostic or model explanations.

Recently Hanna Dyrcz designed a new beautiful theme for these explainers. It’s implemented in the DALEX::theme_drwhy() function.
Find some teaser plots below. A nice Interpretable Machine Learning story for the Titanic data is presented here.

Hanna is a very talented designer. So I’m super happy that at the next satRdays @ gdansk2019 we will have a joint talk ,,Machine Learning meets Design. Design meets Machine Learning”.

New plots are available in the GitHub version of DALEX 0.2.8 (please star if you like it/use it. This helps to attract new developers). Will get to the CRAN soon (I hope).

Instance level explainers, like Break Down or SHAP

Instance level profiles, like Ceteris Paribus or Partial Dependency

Global explainers, like Variable Importance Plots

See you at satRdays!

shapper is on CRAN, it’s an R wrapper over SHAP explainer for black-box models

Written by: Alicja Gosiewska

In applied machine learning, there are opinions that we need to choose between interpretability and accuracy. However in field of the Interpretable Machine Learning, there are more and more new ideas for explaining black-box models. One of the best known method for local explanations is SHapley Additive exPlanations (SHAP).

The SHAP method is used to calculate influences of variables on the particular observation. This method is based on Shapley values, a technique borrowed from the game theory. SHAP was introduced by Scott M. Lundberg and Su-In Lee in A Unified Approach to Interpreting Model Predictions NIPS paper. Originally it was implemented in the Python library shap.

The R package shapper is a port of the Python library shap. In this post we show the functionalities of shapper. The examples are provided on titanic_train data set for classification.

While shapper is a port for Python library shap, there are also pure R implementations of the SHAP method, e.g. iml or shapleyR.


The shapper wraps up the Python library, therefore installation requires a bit more effort than installation of an ordinary R package.

Install the R package shapper

First of all we need to install shapper, this may be the stable release from CRAN

or the developer version form GitHub.

Install the Python library shap

Before you run shapper, make sure that you have installed Python.

Python library shap is required to use shapper. The shap can be installed both by Python or R. To install it through R, you an use function install_shap() from the shapper package.

If you experience any problems related to the installation of Python libraries or evaluation of Python code, see the reticulate documentation. The shapper access Python within reticulate, therefore the solution to the problem is likely to be in there ;-).

Would you survive sinking of the RMS Titanic?

The example usage is presented on the titanic_train dataset from the R package titanic. We will predict the Survived status. The other variables used by the model are: Pclass, Sex, Age, SibSp, Parch, Fare and Embarked.

Let’s build a model

Let’s see what are our chances assessed by the random forest model.

Prediction to be explained

Let’s assume that we want to explain the prediction of a particular observation (male, 8 years old, traveling 1-st class embarked at C, without parents and siblings.

Model prediction for this observation is .558 for survival.

Here shapper starts

To use the function shap() function (alias for individual_variable_effect()) we need four elements

  • a model,
  • a data set,
  • a function that calculated scores (predict function),
  • an instance (or instances) to be explained.

The shap() function can be used directly with these four arguments, but for the simplicity here we are using the DALEX package with preimplemented predict functions.

The explainer is an object that wraps up a model and meta-data. Meta data consists of, at least, the data set used to fit model and observations to explain.

And now it’s enough to generate SHAP attributions with explainer for RF model.

Plotting results

To generate a plot of Shapley values you can simply pass an object of class importance_variable_effect to a plot() function. Since we are interested in the class Survived = 1 we may add additional parameter that filter only selected classes.

Labels on y-axis show values of variables for this particular observation. Black arrows show predictions of model, in this case, probabilities of each status. Other arrows show effect of each variable on this prediction. Effects may be positive or negative and they sum up to the value of prediction.

On this plot we can see that model predicts that the passenger will survive. Changes are higher due to young age and 1st class, only the Sex = male decreases chances of survival for this observation.

More models

It is useful to contrast prediction of two models. Here we will show how to use shapper for such contrastive explanations.

We will compare randomForest with svm implemented in the e1071.

This model predict 32.5% chances of survival.

Shapley values plot may be modified. To show more than one model you can pass more individual_variable_plot objects.

To see only attributions use option show_predcited = FALSE.


Documentation and more examples are available at https://modeloriented.github.io/shapper/. The stable version of the package is on CRAN, the development version is on GitHub (https://github.com/ModelOriented/shapper). Shapper is a part of the DALEX universe.