modelDown is now on CRAN!


The modelDown package turns classification or regression models into HTML static websites.
With one command you can convert one or more models into a website with visual and tabular model summaries. Summaries like model performance, feature importance, single feature response profiles and basic model audits.

The modelDown uses DALEX explainers. So it’s model agnostic (feel free to combine random forest with glm), easy to extend and parameterise.

Here you can browse an example website automatically created for 4 classification models (random forest, gradient boosting, support vector machines, k-nearest neighbours). The R code beyond this example is here.

Fun facts:

archivist hooks are generated for every documented object. So you can easily extract R objects from the HTML website. Try

archivist::aread("MI2DataLab/modelDown_example/docs/repository/574defd6a96ecf7e5a4026699971b1d7")

– session info is automatically recorded. So you can check version of packages available at model development (https://github.com/MI2DataLab/modelDown_example/blob/master/docs/session_info/session_info.txt)

– This package is initially created by Magda Tatarynowicz, Kamil Romaszko, Mateusz Urbański from Warsaw University of Technology as a student project.

iBreakDown: faster, prettier and more precise explanations for predictive models (with interactions)

LIME and SHAP are two very popular methods for instance level explanations of machine learning models (XAI).
They work nicely for images and text inputs, but share similar weakness in case of tabular data: explanations are additive while complex models are (sometimes) not. iBreakDown addresses this problem.

iBreakDown is a a successor of the breakDown package. Yesterday it has arrived on CRAN. Key new features are:

– It identifies and shows feature interactions (if there are local interactions in the model).
– It is much faster. For additive explanations the complexity is O(p) instead of O(p^2).
– The plotD3 function creates an interactive D3-based break-down plot (thanks to r2d3).
– iBreakDown has a new design, created by Hanna Dyrcz. We will have a talk about it ,,Machine learning meets design. Design meets machine learning.” at satRdays. Try the new theme theme_drwhy()!.
– It shows explanation level uncertainty – how good are explanations?

A methodology behind this package is described in the iBreakDown: Uncertainty of Model Explanations for Non-additive Predictive Models.

A nice titanic-powered use-case is described in the titanic vignette.

An example of the D3 interactive explainer is here.

Some intuition is introduced in the Visual Exploration, Explanation and Debugging (working version, still in progress).

iBreakDown is a part of the DrWhy.AI family of explainers consistent with the DALEX.

Let us know if you like it. Feel free to create a pull request with new features, add issue with new idea or star the github repository if you like this package.

Bank będzie musiał wyjaśnić… czyli o wyjaśnialnych modelach predykcyjnych

Czym są wyjaśnialne modele predykcyjne?

Interpretowalne uczenie maszynowe (IML od Interpretable Machine Learning) czy wyjaśnialna syntetyczna inteligencja (XAI od eXplainable Artificial Intelligence) to względnie nowa, a ostatnio bardzo szybko rozwijająca się, gałąź uczenia maszynowego.

W skrócie chodzi o to, by konstruować takie modele, dla których człowiek możne zrozumieć skąd biorą się decyzje modelu. Złożone modele typu lasy losowe czy głębokie sieci są ok, o ile potrafimy w jakiś sposób wyjaśnić co wpłynęło na konkretną decyzję modelu.

Po co?

W ostatnich latach często uczenie maszynowe było uprawiane ,,w stylu Kaggle”. Jedynym kryterium oceny modelu była skuteczność modelu na jakimś ustalonym zbiorze testowym. Takie postawienie sprawie często zamienia się w bezsensowne żyłowanie ostatnich 0.00001% accuracy na zbiorze testowym.

Tak wyżyłowane modele najczęściej epicko upadają w zderzeniu z rzeczywistością. Ja na prezentacjach lubię wymieniać przykłady Google Flu, Watson for Oncology, Amazon CV, COMPAS i recydywizm czy przykłady z książki ,,Broń matematycznej zagłady”. Ale lista jest znacznie dłuższa.

Dlaczego to takie ważne?

W lutym fundacja Panoptykon pisała Koniec z „czarną skrzynką” przy udzielaniu kredytów. W ostatni czwartek (21 marca) w gazecie Bankier można było znaleźć ciekawy artykuł Bank będzie musiał wyjaśnić, dlaczego odmówił kredytu, w której opisuje niektóre konsekwencje ustawy przyjętej przez Senat.

Przykładowy cytat:
,,Ustawa wprowadza także m.in. przepis nakazujący bankom przedstawienie klientowi wyjaśnienia dotyczącego tego, które dane osobowe miały wpływ na ostatecznie dokonaną ocenę zdolności kredytowej. Obowiązek ten będzie dotyczył zarówno sytuacji, w której decyzja ta została podjęta w pełni zautomatyzowanym procesie, na podstawie tzw. algorytmów, jak i sytuacji, w której w podejmowaniu decyzji brał udział także człowiek”.

Wygląda więc na to, że niedługo wyjaśnialne uczenie maszynowe spotka nas w okienkach bankowych przy okazji decyzji kredytowych.

Nie tylko banki

Okazuje się, że temat wyjaśnialności w czwartek omawiany był nie tylko w Senacie. Akurat byłem tego dnia na bardzo ciekawej konferencji Polish Business Analytics Summit, na której dr Andrey Sharapov opowiadał o tym jak Lidl wykorzystuje techniki XAI i IML do lepszego wspomagania decyzji.

Zbudować model jest prosto, ale pokazać wyniki modelu biznesowi, tak by ten wiedział jak na ich podstawie podejmować lepsze decyzje – to jest wyzwanie dla XAI. Andrey Sharapov prowadzi na LinkedIn ciekawą grupę na którą wrzuca materiały o wyjaśnialnym uczeniu maszynowym. Sporo pozycji można też naleźć na tej liście.

Na poniższym zdjęciu jest akurat przykład wykorzystania techniki Break Down (made in MI2 Data Lab!!!) do wspomagania decyzji dotyczących kampanii marketingowych.

Warszawa po raz trzeci

Aż trudno uwierzyć w ten zbieg okoliczności, ale tego samego dnia (tak, wciąż piszę o 21 marca) na Spotkaniach Entuzjastów R profesor Marco Robnik omawiał różne techniki wyjaśnialności opartej o permutacje.

Skupił się na technika EXPLAIN i IME, ale było też o LIME i SHAP a na niektórych slajdach pojawiał się nasz DALEX i live (choć pewnie my byśmy już reklamowani nowsze rozwiązanie Mateusza Staniaka, czyli pakiet localModels).

Btw, spotkanie było nagrywane, więc niedługo powinno być dostępne na youtube.

Gdzie mogę dowiedzieć się więcej?

Wyjaśnialne uczenie maszynowe to przedmiot badań znacznej części osób z MI2DataLab. Rozwijamy platformę do automatycznej analizy, eksploracji i wyjaśnień dla modeli predykcyjnych DrWhy.AI.

Niedługo napisze więcej o materiałach i okazjach podczas których można dowiedzieć się więcej o ciekawych zastosowaniach technik wyjaśnialnego uczenia maszynowego w finansach, medycynie spersonalizowanej czy innych ciekawych miejscach.

DALEX has a new skin! Learn how it was designed at gdansk2019.satRdays

DALEX is an R package for visual explanation, exploration, diagnostic and debugging of predictive ML models (aka XAI – eXplainable Artificial Intelligence). It has a bunch of visual explainers for different aspects of predictive models. Some of them are useful during model development some for fine tuning, model diagnostic or model explanations.

Recently Hanna Dyrcz designed a new beautiful theme for these explainers. It’s implemented in the DALEX::theme_drwhy() function.
Find some teaser plots below. A nice Interpretable Machine Learning story for the Titanic data is presented here.

Hanna is a very talented designer. So I’m super happy that at the next satRdays @ gdansk2019 we will have a joint talk ,,Machine Learning meets Design. Design meets Machine Learning”.

New plots are available in the GitHub version of DALEX 0.2.8 (please star if you like it/use it. This helps to attract new developers). Will get to the CRAN soon (I hope).

Instance level explainers, like Break Down or SHAP

Instance level profiles, like Ceteris Paribus or Partial Dependency

Global explainers, like Variable Importance Plots

See you at satRdays!