DALEX: how would you explain this prediction?

Last week I wrote about single variable explainers implemented in the DALEX package. They are useful to plot relation between a model output and a single variable.

But sometimes we are more focused on a single model prediction. If our model predicts possible drug response for a patient, we really need to know which factors drive the model prediction for a particular patient. For linear models it is relatively easy as the structure of the model is additive. In 2017 we have developed breakDown package for lm/glm models.

But how to explain/decompose/approximate predictions for any black box model?
There are several approaches. The (probably) most known is LIME with great examples for image and text data. There is an R port lime developed by Thomas Pedersen. In collaboration with Mateusz Staniak we developed live package, similar approach, easy to use with models created by mlr package.
The other technique that can be used here are Shapley values which use attribution theory/game theory to attribute effects of different variables for a single prediction.

Recently we have developed a yet another approach (paper under preparation, implemented in the breakDown version 0.4) that works in a model agnostic way (here you can check how to use it for caret models). You can play with it via the single_prediction() function in the DALEX package.
Such decomposition is useful for many reasons mentioned in papers listed above (deeper understanding, validation, trust, etc).
And, what is really extra about the DALEX package, you can compare contributions of different models on the same scale.

Let’s train three models (glm / gradient boosting model and random forest model) to predict quality of wine. These models are very different in structure. In the figure below, for a single wine, we compare predictions calculated by these models. For this single wine, for all models the most influential variable is the alcohol concentration as the wine has much higher concentration than average. Then pH and sulphates take second and third positions in all three models. Looks like models have some agreement even if they structure is very different.


If you want to learn more about DALEX package and decompositions for model predictions please consult following cheatsheet or the DALEX website.

If you want to learn more about explainers in general, join our DALEX Invasion!
Find our DALEX workshops at SER (Warsaw, April 2018), ERUM (Budapest, May 2018), WhyR (Wroclaw, June 2018) or UseR (Brisbane, July 2018).


DALEX: understand a black box model – conditional responses for a single variable

Black-box models, like random forest model or gradient boosting model, are commonly used in predictive modelling due to their elasticity and high accuracy. The problem is, that it is hard to understand how a single variable affects model predictions.

As a remedy one can use excellent tools like pdp package (Brandon Greenwell, pdp: An R Package for Constructing Partial Dependence Plots, The R Journal 9(2017)) or ALEPlot package (Apley, Dan. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models (2016)).
Now one can use the DALEX package to not only plot a conditional model response but also superimpose responses from different models to better understand differences between models.

Screen Shot 2018-02-19 at 12.27.58 AM

Consult the following vignette to learn more about the DALEX package and explainers for a single variable.


if you want to learn more about explainers, join our DALEX Invasion!
Find our DALEX workshops at SER (Warsaw, April 2018), ERUM (Budapest, May 2018), WhyR (Wroclaw, June 2018) or UseR (Brisbane, July 2018).