Wykresy HE (***)

(Kierując się sugestiami z maili, trudniejsze techniczne wpisy oznaczać będę gwiazdkami w tytule)

GPS w domowych zastosowaniach pozwala kierowcom ominąć korki, ale w bardziej przemysłowych zastosowaniach pozwala na zarządzanie flotą pojazdów lub sterowanie bojowym dronem. Podobnie jest i z wizualizacją. Słupki i kropki można wykorzystać by pokazać kilka średnich ale istnieją też dla nich bardziej zaawansowane zastosowania, takie jak np. prezentacja różnic w strukturach kowariancji. I dziś będzie o takich wizualizacjach, ale po kolei.

Problem z którym ostatnio miałem do czynienia jest następujący (dziedzina: antropologia). Mamy czaszki z różnych lokalizacji i od osobników obu płci. Każda czaszka jest opisana zbiorem pięciu liczb opisujących odległości pomiędzy określonymi punktami na czaszce. Co chcemy sprawdzić? Czy i jak parametry czaszek różnią się pomiędzy płciami i lokalizacjami.

Gdybyśmy parametry czaszek opisywali jedną liczbą zamiast pięcioma na tak postawiony problem można by podejść stosując klasyczną dwukierunkową analizę wariancji.
Mając pięć parametrów opisujących czaszki, gdybyśmy każdy z nich traktowali niezależnie moglibyśmy tak postawiony problem rozwiązać pięcioma niezależnymi analizami wariancji.
Ale parametry są zależne i w tym przypadku lepszym podejściem jest zastosowanie modeli umożliwiających jednoczesne modelowanie wielowymiarowych zmiennych.

Problem jednoczesnego modelowania wielowymiarowych cech pojawia się dosyć często, szczególnie gdy zmienne, które opisujemy są zależne. Przykładowo w łącznym modelowaniu ilości mleka, białka i tłuszczu w udoju lub w analizie czynników wpływających na poziom umiejętności (opisany przez zestaw zmiennych).

Gdzie w tym zagadnieniu są ciekawe wykresy? Zobaczmy. Zaczniemy od przypomnienia jak sprawa wygląda problem testowania dla jednowymiarowych zmiennych.

Model liniowy zazwyczaj przedstawia się w postaci

Screen Shot 2015-02-15 at 22.06.50

Czytaj dalej Wykresy HE (***)

Ważona średnia, analiza wariancji a wyniki PISA

Zgodnie z zapowiedziami dzisiaj będzie kilka technicznych komentarzy dotyczących wtorkowego wpisu. Pojawi się temat ważenia obserwacji, analizy wariancji, pojawi się bardzo przydatna funkcja by() z pakietu R i oczywiście opis krok po kroku jak zrobić wykres prezentowany w poprzednim odcinku.

Czytaj dalej Ważona średnia, analiza wariancji a wyniki PISA

Gdzie można zarobić? Kto może zarobić?

Tym wpisem mam nadzieję, że zakończę pokaźną serię wizualizacji danych z Diagnozy Społecznej i znajdziemy kolejne ciekawe dane.

Jakiś czas temu pojawiła się w komentarzach sugestia, by sprawdzić jak na dochody wpływa miejsce zmieszkania, wykształcenie, zawód, stan cywilny itp. Nie każdą z tych rzeczy łatwo sprawdzić na danych z Diagnozy, np. frakcja osób, które podały zawód jest dosyć nieduża. Ograniczymy się więc do zależności, które możemy badać na dużych grupach ankietowanych

Widzieliśmy już, że dochody zależą istotnie od wieku i od płci. Aby usunąć wpływ tych zmiennych poniżej wykonamy analizą tylko dla pracujących mężczyzn w wieku od 30 do 45 lat.

Zaczniemy od związku miejsca zamieszkania z dochodami. Prosta dwukierunkowa analiza wariancji pokazuje, że dochody zależą od województwa i od wielkości miasta i również, że ta zależność nie jest addytywna. Tzn. wpływ/efekt wielkości miasta jest różnych w różnych województwach. Wyników analizy wariancji nie zamieszczam ale można ją odtworzyć z skryptu w R. Co ciekawe otrzymujemy podobne wyniki bez względu na to czy analizujemy dochody zlogarytmowane czy nie, czy użycjemy transformacji Boxa Coxa czy nie.

Wielkość miasta w którym pracuje akietowany podzielono na trzy grupy: ‘wieś’, do 200 tys’ i ‘powyżej 200tys’. W oryginalnych danych tych grup jest więcej, ale połączone zostały te najbardziej do siebie podobne w celu otrzymania możliwie czytelnych wykresów. Województw jest 16, w czterech z nich nie ma miast o wielkości powyżej 200tys mieszkańców, stąd brakujące elementy ponizej.

Na poniższym wykresie zaznaczono dla każdego województwa rozkład dochodów netto w rozbiciu na wielkość miasta zamieszkania. Kolory odpowiadają wielkości miasta. Jasny/blady pasek odpowiada rozpiętości średnich dochodów 50% zarabiających osób z danej lokalizacji, lewy brzeg odpowiada dolnemu kwartylowi, prawy brzeg górnemu kwartylowi. Czyli możemy potraktować ten pasek jako reprezentację najbardziej typowych dochodów. (Uwaga! oś logarytmiczna). Kropką zaznaczono medianę dochodów a krzyżykiem średnią. Średnia potrafi być znacznie wyższa niż mediana, ale tak to już jest z dochodami. Po prawej stronie wykresu podano dla każdego województwa informację o liczbie osób na podstawie której konstruowany jest ten wykres (odpowiednio na wsi, małym mieście, dużym mieście).

Co ciekawego tu widać? Zazwyczaj im większe miasto tym wyższe dochody. Stolica znacząco odstaje od pozostałych lokalizacji. Ale są też wyjątki od tej reguły. W województwie Podlaskim duże miasto (czyli Białystok) charakteryzuje się mniejszymi dochodami niż otaczające go małe miasta i wsie (region żyje z turystyki). W innych województwach najniższe dochody mają osoby mieszkające na wsi.

 

Poniżej przedstawiamy te same dane ale zamieniając kolejność zmiennych, tym razem pokazemy obok siebie województwa. To samo województwo jest oznaczone tym samym kolorem, a kolejność odpowiada średniemu dochodowi. W grupie dużych i średnich miast najwyższe dochody mają osoby mieszkające w województwie Mazowieckim. Ale juz  w kategori wieś najlepiej zarabiają mieszkańcy Pomorza. Przy czym średnia bardzo odstaje od mediany, więc nie wszystkim mieszkańcom tego województwa się tak świetnie powodzi.

 

Jako uzupełnianie tematu poniżej przedstawiam zależności pomiędzy stanem cywilnym a dochodami oraz pomiędzy liczbą lat edukacji a dochodami. Miło zobaczyć piękną korelacje pomiędzy liczbą lat nauki a dochodami.