Gdzie jest mój autobus? Urban Sensors hakaton – rejestracja otwarta do poniedziałku


Jeszcze do poniedziałku można się zgłaszać na Urban Sensors – jednodniowy hakaton, który odbędzie się w Warszawie 26 września na wydziale MiNI Politechniki Warszawskiej (Koszykowa 75) – dzień przed konferencją WhyR.

Podczas hakatonu uczestnicy otrzymają tokeny dostępowe do danych online i historycznych o położeniu autobusów i tramwajów w Warszawie.

Poniżej znajduje się wycinek danych z zajawką jakie zmienne są mierzone dla tramwajów. Poza położeniem tramwaju i brygady, mamy informacje o najbliższym i kolejnym przystanku, prędkości pojazdu, kierunku, opóźnieniu, statusie, brygadzie itp.

Więcej o hakatonie przeczytać można tutaj. Formularz rejestracji dostępny jest tutaj.

Urban Sensors – hakuj dane o komunikacji w Warszawie

Urban Sensors to jednodniowy hakaton nad danymi miejskimi, który odbędzie się w Warszawie 26 września na wydziale MiNI Politechniki Warszawskiej (Koszykowa 75) – dzień przed konferencją WhyR.

Położenie online każdego tramwaju i autobusu

Kręcą Cię miejskie dane? Ten Hakaton to unikalna okazja pracy na dużych danych miejskich (więcej poniżej) wspólnie z pracownikami Urzędu Miasta Warszawa, którzy te dane znają od podszewki. Eksperci z urzędu miasta będą z nami przez czas trwania hakatonu, pomogą ocenić realizowalność nawet najbardziej szalonego pomysłu, zaproponują ciekawe tematy badawcze, wskażą gdzie szukać dodatkowych danych.

Hakaton prowadzony jest w ramach projektu VaVeL, dzięki któremu powstaje nowa unikatowa infrastruktura dostępu do bardzo głębokich danych online o tym co się dzieje w mieście. Podczas hakatonu będziemy pracowali na prototypowej platformie, z dostępem do danych których w takiej skali wcześniej nie było.

Dane z którymi będziemy pracować w pierwszej kolejności to położenie autobusów i tramwajów (GPS) oraz zagęszczenie osób w różnych rejonach Warszawy (na podstawie raportów ze stacji bazowych). Z danymi będzie można pracować w trybie online (online śledzenie gdzie jest teraz który autobus); trybie dostępu do danych historycznych (gigabajty danych o położeniu pojazdów z całego miesiąca); oraz trybie batch (zrzut danych dla dwóch wybranych ciekawych dni, względnie małe pliki).

Co będziemy robić na hakatonie?

Punktem wspólnym projektów na hakaton są dane miejskie, format rozwiązań może być dowolny. Przykładowe pomysły na projekty:
– tramRadar – aplikacja mobilna pokazująca gdzie w okolicy są w obecnej chwili tramwaje i jakie mają opóźnienie (jeżeli mają) na bazie danych online,
– automatycznie generowany dzienny raport z opóźnień w ruchu,
– system machine-learning przewidujący opóźnienie autobusów i tramwajów.
Można oczywiście też przyjść z własnym pomysłem.

Do samego hakatonu pozostało jeszcze trochę czasu. Jeżeli macie ciekawy pomysł na urozmaicenie tego wydarzenia, podzielcie się w komentarzach.

Podczas hakatonu nie planujemy bezpośrednich nagród finansowych.
Ale Urban Sensors to świetna okazja by popracować z danymi miejskimi nad projektem który może być wdrożony i skomercjalizowany, więc sława i pieniądze czekają na osoby, które na tej prototypowej platformie zbudują użyteczne usługi.

Jak się zapisać?

Zapisy na hakaton rozpoczną się 5 września.
Planujemy przyjąć 40-50 osób.
Pierwszeństwo będą miały osoby mogące pochwalić się ciekawymi realizacjami.
Informacja o zapisach pojawi się w pierwszej kolejności na stronie http://whyr.pl/hackathon/.

Prezentacje publiczne

Czy zdarza Ci się prezentować na publicznym forum wyniki swoich badań/analiz? Jeżeli tak, to ten wpis może Cię zainteresować.

Miesiąc temu, na konferencji UseR2017 miałem referat dotyczący wizualizacji modeli uczenia maszynowego. Temat spotkał się ze sporym zainteresowaniem, na tę 15 minutową prelekcję zapisało się ponad 500 osób.
Jak się do takiej prezentacji przygotować?
Poniżej podzielę się kilkoma doświadczeniami i materiałami.

Książki

704501127o
Jakiś czas temu otrzymałem od PWN książkę Piotra Wasylczyka ,,Prezentacje naukowe – Praktyczny poradnik’’ (link do strony pwn). Książkę otrzymałem bezpłatnie z prośbą o komentarz i prawdopodobnie z nadzieją na reklamę.
Książkę przeczytałem i muszę powiedzieć wprost, że jest świetna, z pewnością będę polecał dyplomantom.
Dla początkujących to lektura obowiązkowa. Znajduje się w niej wiele praktycznych porad dotyczących tego jak przygotować slajdy na prezentacje, jak przygotować plan wystąpienia, jak przygotować siebie, jak rozpocząć prezentacje, jak mówić do różnych odbiorców. Wszystkie te wątki z konkretnymi ćwiczeniami.

Zaznaczyć muszę, że nie zgadzam się z wszystkimi opiniami przedstawionymi w tej książce. Np. Piotr Wasylczuk argumentuje, że nie ma sensu na początku prezentacji omawiać planu prezentacji, a moim zdaniem w wielu sytuacjach to pomaga słuchaczowi ustawić oczekiwania. Ale nawet opinie z którymi się nie zgadzamy prowokują nas do głębszego zastanowienia się nad danym tematem. Warto poznać argumenty autora.

To co mi się w tej książce podoba to skupienie na celu prezentacji, liczne ćwiczenia oraz bardzo wiele przykładów i ilustracji ,,z życia’’.
Autora w akcji można zobaczyć np. na nagraniu finału FameLab 2016.
Część z umieszczonych tam ćwiczeń planuję sprawdzić na zajęciach ze studentami. Książkę można przejrzeć w MI2DataLabie.

cover
Oczywiście książek o efektywnej komunikacji jest więcej. Ostatnio, duże wrażenie zrobiła na mnie książka Trees, maps, and theorems Jean-Luc Doumonta. Pozycja dosyć droga (80 EUR, >10x więcej niż ,,Prezentacje naukowe’’) ale bardzo ciekawie zaprojektowana. Być może określenie ,,książka’’ nie jest właściwe, bardziej pasowałoby ,,album’’.
Złośliwi powiedzą, że co druga strona to spis treści a gigantyczne marginesy są niezbędne by względnie małą liczbę słów rozciągnąć na 169 stron. Ale eksperymentowanie ze składem pozwala na lepsze uhonorowanie przedstawianej treści.

Zdanie na temat tego projektu można wyrobić sobie po lekturze kilku stron umieszczonych pod adresem http://www.treesmapsandtheorems.com/ lub po obejrzeniu prezentacji autora na TEDxGhent https://www.youtube.com/watch?v=VK74BIaxkYE.

Okladka-724x1024Zdarza mi się oglądać dobre wystąpienia, poprowadzone wokół ciekawego tematu, ale spalone przez złą prezentację danych – które miały być głównym wynikiem. Dziwaczne wykresy z ozdobnikami, z których nie sposób cokolwiek odczytać. Jeżeli wyniki liczbowe stanowią ważny punkt naszego wystąpienia to trzeba je pokazać w sposób pozwalający na szybkie i poprawne zrozumienie. Nie zawsze jest to proste. W tym obszarze polecam ,,Zbiór esejów o sztuce prezentowania danych” który napisałem jakiś czas temu. W postaci HTML jest dostępna na tej stronie.

Blogi i wideo

Wiele ciekawych pomysłów na format prelekcji można też znaleźć w blogosferze. Polecam blog StoSłów http://www.stoslow.pl/ prowadzony przez Marka Stączka (EdisonTeam). Marek prowadzi warsztaty z wystąpień publicznych i jest duża szansa, że poprowadzi taki warsztat w tym roku w naszym DataLabie.
Ostatnio pisał na blogu na temat zwięzłości wypowiedzi. Oczywistą oczywistością jest to, że do prezentacji trzeba się przygotować. Mniej oczywiste jest to, że im krótsza prezentacja tym dłużej trwa przygotowanie. Dwugodzinny wykład wymaga zazwyczaj krótkiego przypomnienia sobie kluczowych wyników ale już dziesięcio- piętnasto- minutowa prezentacja to czasem kilka(naście) dni przygotowań (więcej tutaj).


Oczywiście świetnym źródłem inspiracji dotyczących wystąpień publicznych jest konferencja TED. Zdarzają się tam prezentacje o niczym, ale jest też bardzo wiele perełek, w których ciekawa treść została fantastycznie przedstawiona. Np. prezentacja Susan Cain o introwertykach pokazuje, że nawet jeżeli tłumy widzów nas przerażają, to możemy przygotować świetną prezentację na ważny dla nas temat.

Świetny jest też odczyt J.K. Rowling na zakończenie roku na Stanfordzie. Odczyt ten jest czytany w większości z kartki a więc w sprzeczności z typową radą ,,nie czytaj z kartki”. Ale dotyczy historii ważnej dla Rowling i interesującej dla słuchacza. W głosie autorki słychać emocje, a sama prelekcja zapada w pamięć. Całość zobaczyć można tutaj.

Warsztaty

Książki i blogi to ciekawe źródło inspiracji, ale nie zastąpią ćwiczeń praktycznych oraz informacji zwrotnych od bardziej doświadczonych kolegów/koleżanek.

Zawsze można w swojej okolicy poszukać przydatnego kursu dotyczącego publicznych wystąpień. Na rynku takich kursów jest wiele, np. prowadzone przez wspominanego wyżej Marka Stączka. Dla doktorantów i pracowników naukowych często uczelnie organizują specjalistyczne warsztaty.
Np. w ofercie Uniwersytetu Warszawskiego dla pracowników i doktorantów znajdują się świetne zajęcia z emisji głosu prowadzone przez Instytut Polonistyki Stosowanej (brałem udział, gorąco polecam). W USOSie jest też kurs oferowany dla studentów, ale akurat z nim nie miałem do czynienia.

Jakiś czas temu Nowoczesny Uniwersytet UW (http://www.nuw.uw.edu.pl/) organizował warsztaty z Dobromirem Dziewulakiem dla doktorantów i pracowników naukowko-dydaktycznych. Byłem, polecam. Swoją drogą, Dobromir prowadzi blog w serwisie Wszystko Co Najważniejsze poświęcony dydaktyce – ciekawa lektura.

Jakiś czas temu Fundacja na rzecz Nauki Polskiej w ramach projektu Skills organizowała warsztaty i szkolenia dla naukowców. Akurat trafiłem na warsztaty prowadzone przez aktora – Jacka Rozenka, bardzo ciekawe doświadczenie. Projekt co prawda się zakończył, ale warto śledzić stronę FNP, być może temat będzie kontynuowany, tym bardziej, że Fundacja bardzo stawia na rozwój naukowców.

Take home

Prezentacje naukowe to oczywiście temat rzeka.
Ale w rzekach łatwo utonąć.
Trzy moim zdaniem najważniejsze wątki to.

(1) Pamiętaj co chcesz powiedzieć.
Bez względu na to, jak długa jest Twoja prezentacja, najprawdopodobniej większość osób zapamięta z niej maksymalnie trzy zadania – punkty. Zapisz sobie kluczowe punkty, które chciałbyś by były zapamiętane. Przygotuj prezentacje tak by ułatwić zrozumienie dlaczego akurat te punkty są ważne. Nie przesadzaj z treścią. Mów w sposób prosty i zrozumiały.

(2) Bądź przygotowany.
Dobra prezentacja wymaga przygotowania. Im jest ważniejsza, tym dłużej się ją przygotowuje. Im krócej ma trwać, tym dłużej się ją przygotowuje. Gdy doktorant jedzie na międzynarodową konferencję pokazać w 20 minut wyniki nad którymi pracował przez dwa lata, nie jest niczym dziwnym spędzenie kilku dni (!) nad jedną konferencyjną prezentacją. Gdy prezentacja jest bardzo krótka (5 min), dobrym pomysłem może być nauczenie się jej na pamięć. Nie musisz mówić z pamięci każdego słowa, ale zawsze masz w pamięci gotowe zdania gdyby akurat skończyła się wena. Jeżeli prezentacja ma być dłuższa, dobrym pomysłem jest poprowadzenie jej wcześniej przed mniejszym i znanym Ci audytorium – np. na seminarium grupowym. Po takim treningu, właściwa prezentacja już Cię nie zaskoczy.

(3) Bądź wypoczęty i zrelaksowany.
Wyśpij się, zjedz lekki posiłek, miej pod ręką wodę aby zwilżyć gardło. Pamiętaj, że na prelekcje przyszły osoby przyjaźnie nastawione, które chcą posłuchać tego co masz do powiedzenia. Stres jest twoim wrogiem i naucz się go oswajać. W małych dawkach pobudza i może być użyteczny. Kilka głębokich oddechów, proste ćwiczenia ruchowe mogą bardzo pomóc. Jeżeli się zatniesz zrób krótką przerwę i wróć do tematu. Pamiętaj co i dlaczego chcesz powiedzieć.

Co widać w lesie losowym?


Miesiąc temu ruszył MI2DataLab, kuźnia/warsztat z narzędziami do analizy danych.
Dzisiaj mieliśmy pierwszą, po oficjalnym otwarciu, obronę pracy magisterskiej w grupie MI2.

Aleksandra Paluszyńska z MIM UW obroniła pracę Structure mining and knowledge extraction from random forest with applications to The Cancer Genome Atlas.
W pracy opisała metodologię stojącą za opracowanym przez nią pakietem randomForestExplainer. Pakiet służy do wizualnej diagnostyki lasów losowych. Analizy ważnych zmiennych, ważnych interakcji, brzegowych zależności itp.

Pracę przeczytać można tutaj.

Pakiet można pobrać i zainstalować z CRAN lub GitHuba.

Krótka winietka opisująca pakiet jest dostępna tutaj.

Z pakietu warto skorzystać – już żaden las losowy nie będzie miał przed nami tajemnic.

Z pamiętnika nauczyciela akademickiego… Trening data scienistów a skoki o tyczce

Pochodzi ze strony https://pl.wikipedia.org/wiki/Skok_o_tyczce

Zakończyłem niedawno trwający pół roku eksperyment dydaktyczny dotyczący sposobu oceniania w nauczaniu data scientistów/stosowanych statystyków.
Dziedzina zobowiązuje. Prowadząc zajęcia trzeba eksperymentować w poszukiwaniu lepszych rozwiązań, zbierać dane i na ich podstawie planować zmiany.

Czy oceny są ważne?

Czy w nauczaniu jakiegoś przedmiotu ważne są kryteria oceny?
To dosyć ciekawa kwestia.
Gdy prowadzę szkolenia poza uczelnią, nikt się nie dopytuje po warsztatach ,,Jaka ocenę dostałem?”. Uczestnikom wystarczy świadomość, że czegoś się nauczyli i wiedzą czego.
Ale w jakiś magiczny osób, mury uczelni sprawiają, że kryteria oceny stają się istotne.
Wiele (większość?) studentów traktuje ocenę i kryteria oceny jako pierwszoplanowy wyznacznik co należy na danym kursie robić.
No cóż, można z tym podejściem walczyć, ale nie można go ignorować.
Ten wpis poświęcony jest w całości kryteriom oceny, bez zagłębianie się w treść kursu.

Po co zmiana?

Poprzednio opisywane i testowane formuły oceny zajęć (1, 2, 3, 4, 5 i inne) oparte były o zbiór zadań/aspektów projektu (realizowanego w grupie) niezależnie ocenianych.
Przykładowo dwa lata temu projekt dotyczył zebrania i analizy danych o tym co media piszą o kandydatach na prezydenta.
Niezależnie ocenianym kryterium była (1) jakość kodu R, (2) sposób prezentacji wyników, (3) bogactwo i (4) złożoność pobranych danych, (5)zastosowana metodologia analizy, itp.

Pomimo, że studenci raczej dobrze przyjmowali taki sposób oceny (ciekawe projekty, można je realizować w grupie, nakierowane na praktyczną weryfikacje pozyskanej wiedzy) to mnie nie podobały się dwa elementy.

Po pierwsze każdy z aspektów był bardzo szeroki i złożony, przez co ocena np. w skali 0-10 staje się uznaniowa (ocena złożonego procesu jest zawsze uznaniowa, ale tutaj poziom swobody przeszkadzał mi).
Dlaczego jakość kodu oceniona jest na 5 a nie 6 punktów?
Samo spisywanie argumentów za i przeciw ocenami każdego etapu każdego zespołu zajmowało mi więcej czasu niż przygotowanie materiałów na zajęcia.

Po drugie gdy projekt podzieli się na wiele części i każdą oceni niezależnie, to okazuje się, że zazwyczaj żadna z części nie jest idealna ale tez żadna nie jest beznadziejna, wiec rozkład punktów zbiega do jakiegoś Gaussa.

Trzeba spróbować czegoś innego.

Ale o co chodzi?

Przedmiotem eksperymentu był sposób oceny postępów prac nad określonym zagadnieniem. Ten sposób był testowany w lecie 2016/2017 na wydziałach MiNI PW (Warsztaty Badawcze) i MIM UW (Modele Liniowe).

Sam pomysł na eksperyment najłatwiej przedstawić korzystając z analogii do skoków o tyczce.
Jak ktoś skoczy 6,17m to rekord świata, jak 6 to rekord Polski, 5m to długość tyczki itp.
Aby skoczyć wysoko liczy się wiele czynników, ale to jak wysoko się skoczyło po prostu widać.
Zorganizujmy więc kryteria oceny złożone z poprzeczek umieszczonych na różnych poziomach trudności, tak by w ramach realizacji projektu uczestnicy wiedzieli jak złożony problem potrafią rozwiązać.

A jak to wygląda w akademickich warunkach?
Część zaliczenia związana z projektem (czasem są jeszcze inne składowe – egzamin lub prace domowe) jest podzielona na 5 (na PW) lub 10 (na UW) części – etapów. Aby podejść do realizacji etapu n+1 trzeba wcześniej zrealizować etap n.
Kolejne etapy są coraz trudniejsze i są związane z wykonaniem określonego modelu/zadania.

Etapy oceniane są 0-1, zrealizowanie wszystkich etapów to 100% z projektu.

Gdyby ktoś chciał zobaczyć jak wyglądały poziomy trudności na Warsztatach Badawczych, to może je podejrzeć tutaj: https://github.com/pbiecek/WarsztatyBadawcze/tree/master/MiNI_2017
A na modelach liniowych
https://github.com/pbiecek/LinearModels/tree/master/MIMUW_2017
Starałem się tak kalibrować poziom trudności, by dla doświadczonej osoby był to 1-2 dni solidnej pracy.

Co na to studenci?

Dla obu grup przygotowałem ankietę z pytaniami o to czy trudność była odpowiednio dobrana i czy sposób oceny był adekwatny. Odpowiedzi było znacznie więcej niż połowa zarejestrowanych studentów, więc choć w sumie studentów nie było zbyt wielu (~40) to odpowiedzi traktuję jako reprezentatywne.

Z premedytacją ankieta została wysłana studentom dwukrotnie. Raz na chwilę przed końcowym wystawieniem punktów/ocen i raz po tym jak poznali swoje punkty i oceny.

W przypadku pytania o kalibracje trudności właściwie wszyscy potwierdzili że zadania nie były ani za trudne ani za łatwe, może z lekką przewagą w kierunku ,jednak trudne’. Co było dla mnie dużym zaskoczeniem, ponieważ jedynie pojedynczy studenci zrealizowali 80%+ projektu.

Co ciekawe, odpowiedzi studentów na pytanie ,czy ten sposób oceny jest dobry dla warsztatowej formy zajęć’ różniły się znacznie w zależności od tego czy odpowiedź padła przed czy po ocenie.
Odpowiedzi wysłane przed poznaniem końcowej oceny oscylowały blisko środkowej, neutralnej odpowiedzi ,nadaje się’. Podczas gdy po tym jak studenci poznali swoje punkty i oceny odpowiedzi zaczęły przyjmować skrajne wartości.
Większość ‘idealnie pasuje’ ale znalazła się też jedna odpowiedź ‘te zajęcia wymagają innego sposobu oceniania’, osoby która zgłosiła rozwiązanie, które nie zostało zaakceptowane. To większe zróżnicowanie przypisuję temu, że studenci zobaczyli że nie wystarczy tylko zrobić dany punkt ale trzeba go zrobić dobrze. Zobaczyli też jak wyglądają komentarze – feedback to ich zgłoszeń.
Mnie akurat taki rozkład odpowiedzi cieszy. Zawsze znajdą się niezadowolone osoby, ale dobrze że są też tacy, co akurat na tym przedmiocie odnaleźli coś dla siebie.

Jeżeli chodzi o wyrywki z komentarzy studentów, to przytoczę kilka wskazujących silne strony tego sposobu oceniania

,,…Jasno określone kryteria oceniania i adekwatnie oceniony wkład pracy…”
,,…Informacje zwrotne na każdym etapie też są bardzo cenne…”
,,…Umiejętność prowadzenia dużych projektów jest bardzo ważna, a pomijana w nauczaniu większości przedmiotów na wydziale…”

i te przypisane do słabych stron tego sposobu oceniania.

,,…Ocena binarna sprawia że nie ma motywacji żeby starać się bardziej niż niezbędne minimum…”
,,…Jak to na pańskich zajęciach, projekt zajmuje dużo czasu, pełen semestr takich przedmiotów to by było za dużo…”

Pointa

Generalnie to jestem zadowolony z tej formuły oceniania. Zderzenie z naprawdę dużym projektem, z jasno zarysowanym planem realizacji, z rosnącym poziomem trudności jednocześnie z krokami których łatwość wykonania zależy od jakości rozwiązań w poprzednim etapie – to nowe na uczelni, ciekawe i myślę że kształcące doświadczenie.

Oceny z tego semestru były jednymi z najniższych w ostatnich latach które wystawiłem (niewiele osób wykonało 80% projektu). Dawno już nie było tyle trójek czy braków zaliczenia, a liczbę piątek w dwóch grupach można pokazać na palcach jednej ręki.
Jak się jednak okazuje, studentom (w większości) to nie przeszkadza, a wręcz daje możliwość poważniejszego sprawdzenia się w realizacji dużego, złożonego i wymagającego projektu.

Kilka rzeczy z pewnością zmienię w kolejnym semestrze.

Pierwszą będzie większa komponenta indywidualna. Teraz, przez to, że cały projekt był realizowany w zespole, dało się odczuć że niektóre elementy zespołu bezkarnie wkładały w projekt mniejszy wysiłek. Po kilku latach eksperymentów z ocenianiem zespołowych projektów widzę, że jednak czysta składowa indywidualna jest bardzo ważna.
Drugą będzie wprowadzenie dwóch (prostszych) projektów. Niestety jeden projekt rozciągnięty w czasie powoduje, że mniej przyzwyczajone to tego sposobu pracy osoby zaczynają coś robić pod koniec semestru, gdy już jest na wszystko za późno. Dwa projekty pozwalają zarówno na przeprowadzenie projektu zespołowego jak i indywidualnego.

Doświadczenia / pomysły na inne eksperymenty edukacyjne?
W przyszłym semestrze prowadzę dwa super ciekawe przedmioty (programowanie w R i techniki wizualizacji danych).
To wymarzone miejsce na testowanie pomysłów na projekty edukacyjne.

1 czerwca – otwarcie MI^2 DataLab


Od kilku miesięcy na wydziale MiNI Politechniki Warszawskiej trwają prace nad przygotowaniem DataLabu.
Zajmowały one ostatnio większość mojej uwagi, tym bardziej miło mi poinformować, że oficjalne otwarcie DataLab odbędzie się już w najbliższy czwartek!
Uroczyste przecięcie wstęgi planowane jest na 11:30, a pomiędzy 12:00 – 16:00 będzie można przyjść, rozejrzeć się i porozmawiać o projektach, możliwościach biernej lub czynnej współpracy.

Na otwarcie przygotowane są różne atrakcje, można np. wygrać Lego Mindstorm lub wziąć udział w dwóch warsztatach:
– Pierwszy ,,Reinforcement Learning – jak nauczyć maszynę wygrywać z człowiekiem?” odbędzie się w czwartek 16:30 – 19:00 (liczba miejsc ograniczona, zapisy http://bit.ly/2q75jUi).
– Drugi ,,Tajniki druku 3D dla początkujących” odbędzie się w piątek 14:00-18:00 (liczba miejsc ograniczona, zapisy http://bit.ly/2qKX3bl).
Słyszałem też coś o molekularnym barze.

Ale o co chodzi?

DataLab powstał na wzór MediaLabów i Hakerspaceów.
To miejsce w którym będziemy prowadzić zaawansowane warsztaty, badania i prace rozwojowe związane z tworzeniem nowych narzędzi analizy i wizualizacji danych.
Lab będzie przestrzenią otwartą dla osób, które mają czas, motywację i energię aby pogłębiać swoje umiejętności analityczne, głównie doktorantów, ale też zainteresowanych studentów lub osoby pracujące przy ciekawych projektach.
Journal club, dostęp do nowych technologii, mini-warsztaty hands-on, wyposażona biblioteczka, środowisko nastawione na zaawansowane modelowanie matematyczno-statystyczne, tego możecie się spodziewać po tej przestrzeni do pracy kreatywnej.

Zainteresowany wzięciem udziału a naszych projektach?
Przyjdź na otwarcie!

DataLab wyposażyła nam firma Nethone z grupy Daftcode.

Archipelag Matematyki


Wydział MiNI PW prowadzi MiNI Akademię Matematyki, czyli spotkania i konkursy dla uczniów szkół ponad gimnazjalnych i nauczycieli. W poprzedni piątek miało miejsce uroczyste zakończenie roku na MiNI Akademii Matematyki, podczas którego pokazano kilka bardzo ciekawych filmików wyprodukowanych w ramach projektu Archipelag Matematyki.

Filmiki są pełne matematycznego (i nie tylko) humoru, który o rozpuku rozbawił moje dzieci a uśmiech wywołał nawet u mnie. Poniżej podpinam trzy filmiki dostępne na youtube. Kolejne mają pojawić się wkrótce na tym kanale (dostępne są od jakiegoś czasu, ale ja się o nich dowiedziałem dopiero w piątek na Akademii). Smaczku tym filmikom dodaje fakt, że marynarzy grają zawodowi matematycy z wydziału MiNI.

Archipelag Matematyki Odcinek 01: “Hotel Hilberta”

Archipelag Matematyki Odcinek 02: “Kartograf van der Graaf”

Archipelag Matematyki Odcinek 04: “Syreni śpiew”

Studia doktoranckie z Data Science

Screen Shot 2017-05-07 at 18.11.58

Obrazek po prawej to link do Keep pushing. The illustrated guide to a Ph.D. Matt Might. Warto obejrzeć jako wprowadzenie do poniższego postu.

Wspólne studia doktoranckie MIM UW + MiNI PW

Bezpośrednim powodem przygotowania tego wpisu jest otwarcie jesienią wspólnych studiów doktoranckich przez dwa świetne wydziały matematyczno-informatyczne: Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego oraz Matematyki i Nauk Informacyjnych Politechniki Warszawskiej. Na obu wydziałach można bronić doktoraty albo z informatyki albo z matematyki i oba te wydziały prowadzą studia w obu kierunkach. Ale też na obu wydziałach te dwie ścieżki mają wiele przecięć splatających się wokół czegoś co dziś określa się jako Data Science.

Przygotowuję ten wpis, ponieważ gdy sam robiłem doktorat o pewnych procesach miałem mgliste lub żadne wyobrażenie co doprowadziło do różnych, nie zawsze dobrych, decyzji. To co prawda było już kilkanaście lat temu, ale jak się okazuje pewne wątki są wciąż aktualne a pewne rozterki dotykają kandydatów na studia doktoranckie niezależnie od pokolenia i koniunktury. Od lat pracuję na wydziale, który prowadzi studia doktoranckie, współpracuję z działami badawczymi różnych dużych firm, w których pracują doktoranci i często rozmawiam z osobami przed, w trakcie lub świeżo po doktoracie i wiele z tych osób ma bardzo podobne wątpliwości co do studiów doktoranckich. Stwierdziłem, że szerzej podzielę się moim (bardzo subiektywnym) spojrzeniem na temat wartości takich studiów.

Czytaj dalej Studia doktoranckie z Data Science

Ustawa 2.0


Ministerstwo Nauki i Szkolnictwa Wyższego wyłoniło trzy zespoły, które pracowały nad założeniami do nowej ustawy o szkolnictwie wyższym, tzw. Ustawie 2.0. Wyniki prac tych zespołów można znaleźć tutaj http://www.nauka.gov.pl/ustawa20/.

Nie jest to prosta lektura. Ale… Dzisiaj Obywatele Nauki opublikowali opinię na temat tych założeń. W tej opinii znajduje się porównanie propozycji prac każdego z trzech zespołów w zestawienie z propozycją ON i w podziale na istotne grupy tematyczne.
To już da się czytać a nawet warto przeczytać. pdf tutaj.

Jednym z wątków, który mnie szczególnie interesował jest temat popularyzacji nauki. Niestety w trzech zgłoszonych propozycjach ten wątek jeżeli się pojawia to skrótowo. Postulaty ON idą w kierunku znacznie poważniejszego potraktowania roli popularyzacji nauki (rozdział VIII). Innym ciekawym wątkiem jest model kariery naukowej, w tym dyskusja czy zostawić habilitacje, czy zostawić profesurę, jakie mogą być doktoraty itp (rozdział III).

123…

Jerzy_Neyman2
Dzisiaj mamy rocznicę 123 urodzin Jerzego Neymana. Jerzy Spława-Neyman to jeden z twórców częstościowego podejścia do testowania, prawdopodobnie najbardziej znany ze sformułowania procesu testowania hipotez jako problem optymalizacji funkcji mocy testu. Współautor lematu Neymana-Pearsona.

Jerzy Neyman doktorat zrobił na Uniwersytecie Warszawskim, jego egzaminatorami byli Wacław Sierpiński i Stefan Mazurkiewicz. Plotka głosi, że ci wybitni matematycy widzieli w Neymanie talent, ale to czym się zajmował nie pasowało do ich definicji matematyki (odwieczny problem na linii matematyka-statystyka). Wysłali go więc do Wielkiej Brytanii aby się sprawdził wśród innych statystyków. Sprawdził się, został np. ForMemRS.

W życiorysie Jerzego Neymana jest wiele polskich akcentów, np. ten, że stworzył w Instytucie Nenckiego laboratorium Biometrii (tak, Nencki to ten Instytut PAN po drugiej stronie ulicy Pasteura). Koniec końców Neyman został jednak profesorem na Berkeley. Zapraszał tam wielu polskich matematyków i statystyków, np. Witolda Kloneckiego, który później opowiadał nam rozmaite anegdotki.

Więcej o Neymanie można przeczytać na stronach AMS lub Wikipedii.