Hans Rosling 27 VII 1948 – 7 II 2017

Screen Shot 2017-02-07 at 23.48.29

Dzisiaj umarł Hans Rosling, ikona wizualizacji danych, założyciel fundacji Gapminder i prawdopodobnie najbardziej rozpoznawalny i wpływowy statystyk XXI wieku (jeden ze 100 najbardziej wpływowych ludzi świata według Times 2012).

Znany między innymi dzięki swoim wystąpieniom na TED i TEDx. Najbardziej znane wystąpienia można zobaczyć tutaj.

Z pamiętnika nauczyciela akademickiego: Kaggle in Class


W tym semestrze na przedmiocie Statystyka II wykorzystywałem Kaggle in Class. Co to jest i co z tego wyszło? O tym poniżej.

Kaggle (https://www.kaggle.com/) to platforma hostowania konkursów opartych o dane. Firma, instytucja badawcza lub inny zainteresowany ogłasza na tej platformie konkurs, polegający zazwyczaj na wykonaniu predykcji w oparciu o jakieś dane. Wykryć raka na bazie rezonansu, przewidzieć zapotrzebowanie na prąd w szkole na podstawie historii, przewidzieć zajętość łóżek szpitalnych? To typowe problemy z tej platformy. Zgłaszający określa nagrodę, termin zakończenia konkursu, kryterium oceny zgłoszeń itp. Tematy konkursów są bardzo różne, dane są różnych kształtów, struktur i wielkości.

Kaggle in Class (https://inclass.kaggle.com/) to część platformy Kaggle, przygotowana do wykorzystania w ramach zajęć. Pozwala na tworzenie własnych konkursów wykorzystując istniejącą infrastrukturę do zgłaszania rozwiązań, oceny automatycznej, dzielenia rankingów na publiczny i prywatny itp. Trzeba wskazać zbiór danych, dokładnie opisać zadanie do wykonania, określić format przesyłania odpowiedzi, dokładnie opisać kryterium oceny rozwiązania. Rejestracja nowego zadania jak i przesyłanie odpowiedzi jest bezpłatne. Kaggle in Class jest bezpłatna i dla prowadzącego i dla studentów.

Statystyka II to kurs, na którym przez pół semestru omawiamy klasyczne techniki predykcji, takie jak bagging, boosting, stacking, lasy losowe, regresja itp. Akurat do ćwiczenia algorytmów predykcyjnych Kaggle pasowało bardzo.

Kilka luźnych wrażeń dotyczących użycia tej platformy.

* Korzystanie z Kaggle pozwala studentom na uzyskanie praktycznie natychmiast oceny zgłoszonego rozwiązania. Natychmiastowy feedback to bardzo przydatna rzecz, studenci nie muszą czekać aż ja ocenię zadanie, (prawie) natychmiast widzą jakie są wyniki, przez co nie tracą ,,momentum” w pracy nad modelem.

* Korzystanie z Kaggle In Class ma tę przewagę nad zwykłymi konkursami Kaggle, że prowadzący może całkowicie dowolnie dobrać sobie problem (omawiam predykcje wieloetykietową to wstawiam dane do predykcji wieloetykietowej), dobrać termin oddania projektu, określić maksymalną liczbą zgłoszeń dziennie itp.

* Kolejną zaletą Kaggle in Class nad Kaggle jest to, że prowadzący zna dane które są modelowane, jeżeli je symulował to zna prawdziwy model, jeżeli to prawdziwe dane z którymi wcześniej pracował to też dużo o nich wie. Dzięki temu w końcowej ocenie może ocenić zarówno podejście do modelowania jak i wybrany model a nie tylko wyznaczone predykcje.

* Kaggle umożliwia ustalenie maksymalnej liczby rozwiązań zgłoszonych dziennie. Ustawienie takiego ograniczenia na dwa dziennie premiuje zespoły, które do problemu podejdą wcześnie. Zgłaszanie rozwiązania ostatniego dnia to ryzyko, że dwa oddane strzały będą daleko od dobrych predykcji. Atakując problem odpowiednio wcześniej mamy większe pole manewru.

* Przygotowanie własnego konkursu niesie ze sobą też ryzyka. Jedno jest takie, że studentom uda się wygenerować idealną predykcję. Mnie to się nawet zdarzyło. Na rzeczywistych (!!!) danych w problemie binarnej klasyfikacji udało się po kilku dniach uzyskać skuteczność 100%. Z punktu widzenia predykcji to świetnie, ale aspekt dydaktyczny leży. Mamy rozwiązanie i już nikt nie opracuje lepszego, my też nie mamy czego poprawiać. Tak więc moje doświadczenie jest takie, że lepiej zamiast rzeczywistych danych wygenerować sztuczne dane o strukturze zgodnej z rzeczywistą, ale kontrolowanym zakłóceniem (np. zachować X, ale wygenerować y na bazie jakiegoś modelu). Jak to możliwe, że ktoś otrzymał 100% skuteczności na zbiorze testowym?

* Wyznaczenie jednego konkretnego współczynnika do optymalizacji bardzo zwiększa zaangażowanie studentów w realizacje projektu. Zamienia projekt w grę na optymalizację. Niektóre zespoły zgłaszały po 20 rozwiązań próbując poprawić nawet naprawdę dobre rozwiązania. To oczywiście miecz obosieczny, ponieważ w rzeczywistości określenie miary do optymalizacji to często zadanie samo w sobie, ale z punktu widzenia zaangażowania to przydatna cecha.

* Ocena nie może być oparta całkowicie o wyniki z Kaggle (jeżeli jest dużo dobrych rozwiązań, to to które jest najlepsze, zależy czasem od przypadku) a z drugiej strony jakoś z tymi wynikami musi być związana (inaczej po co się starać). W przypadku moich zajęć wyniki z Kaggla to była 1/3 punktów z jednego projektu, wydaje mi się to dobrą proporcją.

* Teoretycznie Kaggle In Class jest bezpłatne, ale nie ma się ludzkiego supportu gdyby coś poszło nie tak. W praktyce, gdy takiej pomocy potrzebowałem (musiałem anulować rozwiązania i podmienić dane gdy okazało się że można mieć 100% skuteczność), napisałem maila i człowiek (albo naprawdę sprytne AI) szybko odpisał poprawiając to co trzeba by wszystko działało.

1024 bity (i Bety)

c20

Miesiąc temu pisałem o akcji prowadzenia warsztatów ,,Jak zważyć psa linijką”.
Dzięki grantowi mPotęga planowaliśmy dotrzeć z warsztatami statystycznymi do 5 klas z różnych szkół.
Zainteresowanie okazało się jednak znacznie większe!
Do dziś udało się dotrzeć z warsztatami do ponad 30 nauczycieli i ponad 1000 (słownie: tysiąca!) dzieciaków.

Statystyka i programowanie w podstawówce? Za moich czasów tego nie było!

Czytaj dalej 1024 bity (i Bety)

Najszczęśliwsze zdjęcia posłów i posłanek

Jakiś czas temu, na RBloggers pokazano jak z poziomu R używać Microsoft Cognitive Services API. Co to za API? Zbiór usług do pracy z obrazem, wideo lub tekstem. Przykładowo Ben Heubl użył Emotion API aby ocenić emocje na zdjęciach kandydatów na prezydentów USA a David Smith użył Face API aby oceniać płeć i wiek programistów na GitHub na bazie awatarów.

Super zabawka. Miałem chwilę czasu, stwierdziłem, że się nią pobawię.
Tylko skąd wziąć publicznie dostępny zbiór zdjęć?
Z pomocą przyszła strona Sejmu. Można z niej pobrać profilowe zdjęcia posłów i posłanek.

Korzystanie z Microsoft Cognitive Services okazuje się być bardzo proste, wystarczy użyć pakietu xml2 i funkcji read_html().

Emotion API dla każdej twarzy ze zdjęcia wyznacza scory dla ośmiu emocji (anger, contempt, disgust, fear, happiness, neutral, sadness, surprise). Ale dla zdjęć profilowych posłów i posłanek praktycznie jedyne niezerowe scory otrzymuje się w emocjach happiness i neutral. Okazuje się, że niektóre zdjęcia posłów i posłanek zdobywają wyższe skory w obszarze happiness a inne w neutral.
Co ciekawe posłanki mają znacznie częściej zdjęcia wysoko ocenione w skali happiness. Posłowie mają zdjęcia zeskorowane mniej więcej pół na pół jako happy i neutral.

Poniżej wyniki w rozbiciu na kluby. Proszę traktować to jako zabawkę z Cognitive Services i nie wyciągać niewiadomo jakich wniosków. Narzędzie jak narzędzie, ma jakąś niedokładność. W pionie, kluby uporządkowane ze względu na udział procentowy posłów/posłanek zescorowanych na zdjęciach jako najszczęśliwsi.

Screen Shot 2017-01-18 at 08.36.25

Co nowego w ,,Przewodnik po pakiecie R – wydanie 4.0”?

Przewodnik1234okladka
Czwarte wydanie ,,Przewodnika po pakiecie R” trafiło do księgarń w połowie grudnia. Pierwszy nakład był mały i szybko się skończył, ale od połowy stycznia Przewodnik jest ponownie dostępny.
A ja mam trochę czasu by napisać co nowego można znaleźć w czwartym wydaniu.

Zmian jest wiele. Kierunki zmian są dwa. Po pierwsze, obniżyć próg wejścia dla osób, które dopiero zaczynają przygodę z analizą danych. Łagodnym wprowadzeniem w temat są pierwsze dwa rozdziały. W upraszczaniu tej części przydały się doświadczenia z Pogromców Danych (2000+ osób) i z różnych szkoleń dla nie-programistów.
Drugi kierunek zmian to szersze wprowadzenie do pakietów z grupy tidyverse oraz ułatwień, które oferuje RStudio. Weterani R mają różne ulubione edytory i rozwiązania codziennych problemów, ale dla osób rozpoczynających przygodę z pewnością najefektywniejszą drogą wejścia jest połączenie RStudio i pakietów z tidyverse. Również osoby pracujące z R od lat mogą z zaskoczeniem odkryć, że praca z datami jest bardzo prosta dzięki pakietowi lubridate (ok, lubridate ma już kilka lat na karku) lub że praca z czynnikami jest prosta dzięki pakietowi forcats.

Wzorem poprzednich wydań, pierwsze 3 rozdziały (150 stron) są dostępne bezpłatnie jako pdf online tutaj.

Rozdział 1 – Wprowadzenie
W pierwszym rozdziale znajduje się krótki opis narzędzia jakim jest język R i edytor RStudio.
Zaczynam od pytania ,,Dlaczego warto poznać R?”,
Czytelnik może zapoznać się z przykładowymi fragmentami kodu R do pobierania danych z internetu (z nadzieją na reakcję czytelnika ,,WoW, to się da zrobić w 5 linijkach! Ja też tak chcę!!!”), wizualizacji pobranych danych oraz prostego modelowania statystycznego. Wszystko w zaledwie kilku linijkach kodu, możliwe dzięki dużej ekspresji języka.
Jeżeli ktoś jeszcze nie wie, czy praca z R jest dla niego, ten rozdział pomoże podjąć decyzję.
Jest tutaj też krótka historia rozwoju R, od początków S po lawinowy rozwój R w ostatnich latach/miesiącach.

Czytaj dalej Co nowego w ,,Przewodnik po pakiecie R – wydanie 4.0”?

Hakaton ‘Puls miasta’ @ WhyR 2017

WhyR to Ogólnopolska Konferencja Użytkowników R, która odbędzie się 27-29 września 2017 na Politechnice Warszawskiej (więcej o WhyR). Dzień przed konferencją (26 września) planujemy przeprowadzić bardzo ciekawy hakaton z wykorzystaniem naprawdę dużych miejskich danych.

Jakich danych?
Hakaton realizowany jest w ramach projektu VaVeL (więcej o VaVeL) w którym partnerem jest Ośrodek Badań dla Biznesu PW (więcej o OBB), dzięki czemu będziemy mieli dostęp do danych z najróżniejszych sensorów w Warszawie. Jakich sensorów? Przykładowo dane o położeniu każdego tramwaju i autobusu w praktycznie każdej chwili (live + spora historia), dane o natężeniu ruchu pieszego w różnych punktach miasta, z publicznych kanałów informacyjnych i z wielu innych źródeł (rysunek po prawej to ślad z jednego dnia po sensorach z tramwaju 22). Masa danych. Mikołaj w tym roku przychodzi we wrześniu.

Jak to ogarnąć?
W ramach warsztatów poprowadzimy bezpłatne mini-wykłady z technologii BigData-owych, takich jak Hadoop czy Hive, dzięki czemu uczestnicy będą mogli i będą wiedzieć jak dostać się do tych gigantycznych zasobów. Ale nawet jeżeli ktoś nie przepada za żółtymi słoniami będzie mógł pracować na przetworzonych skrawkach danych lub też będzie mógł wesprzeć zespół od strony wizualizacji, burzy mózgów, tworzenia aplikacji mobilnych czy innych aplikacji.

Co będziemy robić?
Zbieramy różne pomysły na hackaton, ale liczymy też na burzę mózgów podczas samego wydarzenia. Analiza danych oceniających zatłoczenie przystanków na Mordorze? Aplikacja informująca ile się średnio spóźnia linia 10 w okolicach godziny 16? Wizualizacja transferu mieszkańców w różnych godzinach. Zobaczymy co z tego wyjdzie.

Jak się zarejestrować?
Więcej informacji o rejestracji pojawi się po feriach zimowych. Z pewnością warto śledzić stronę konferencji WhyR.

Is it a job offer for a Data Scientist?

screen-shot-2017-01-09-at-21-41-24
TL;DR
Konrad Więcko and Krzysztof Słomczyński (with tiny help from my side) have created a system that is tracing what skills are currently in demand among job offers for data scientists in Poland. What skills, how frequent and how the demand is changing over time.

The full description how this was done. static, +shiny.

Here: The shiny application for browsing skill sets.

Here: The R package that allows to access the live data.

Full version
A data science track (MSc level) will be very soon offered at MiNI department/Warsaw University of Technology and we (i.e. program committee) are spending a lot of time setting up the program. How cool it would be taking into account the current (and forecasted) demand on data science skills on the market? The project executed by Konrad Więcko and Krzysztof Słomczyński is dealing exactly with this problem.

So, the data is scrapped from pracuj.pl, one of the most popular (in Poland) websites with job offers.
Only offers interested to data scientists were used for further analyses.
How these offers were identified? In Poland the job title ‘Data Scientist’ is (still) not that common (except linkedin). And there are different translations and also there is a lot of different job titles that may be interested for a data scientist.
So, Konrad and Krzysztof have developed a machine learning algorithm that scores how much a given offer matches a ‘data scientist profile’ (whatever that means) based on the content of job offer description. And then, based on these predictions, various statistics may be calculated, like: number of offers, locations, demand on skills etc.

Here: Description of the dataset used for the model training.

Here: Description of the machine learning part of the project.

Trends for selected skill sets.

MIMUW vs SuperFarmer

screen-shot-2017-01-04-at-23-02-08
W 1997 roku DeepBlue (IBM) wygrał z mistrzem szachowym Garri Kasparowem.
W 2011 roku Watson (IBM) wygrał w Jeopardy! z dwoma mistrzami Bradem Rutterem i Kenem Jenningsem.
W 2016 roku AlphaGo (Google) wygrał w go z jednym z najlepszych graczy Lee Sedolem.
A w tym semestrze, pod przykrywką zajęć z programowania w R i wizualizacji danych, studenci z MIM UW walczą z grą SuperFarmer. Szukamy strategii wygrywającej (w jakimś sensie).

SuperFarmer to gra wydana przez Granna na bazie gry Hodowla Zwierzątek, którą opracował matematyk, Karol Borsuk, profesor Uniwersytetu Warszawskiego. Zasady są dosyć proste, przez co można grać nawet z małymi dziećmi. Gra jest bardzo dynamiczna i przyjemna nawet dla wytrawnych / starszych graczy.

Póki co, najlepsza znaleziona przez studentów strategia ma medianowy czas gry 34 kroki (tj. w grze jednoosobowej dla najlepszej strategii, połowa gier kończy się zwycięstwem przed 34 krokiem).

rozkladliczbyruchow

Czytaj dalej MIMUW vs SuperFarmer

Konkurs na najgorszy wykres 2016 roku

Zbliża się nasz konkurs na najgorszy wykres tego roku. Kandydaci z poprzednich lat dowodzą, że nie jest prosto zdobyć ten tytuł (edycja 2015, edycja 2014, edycja 2013, edycja 2012).

Zasada konkursu jest prosta. Raz dziennie, do końca roku, można wskazać swoje typy za pomocą ankiety umieszczonej na końcu tego wpisu. Po nowym roku zobaczymy, który wykres otrzymał najwięcej głosów. To on otrzyma tytuł ,,Zniekształcenie roku 2016”, a więc grafikę najbardziej zniekształcającą prezentowane dane. Aby ułatwić głosowanie, każdy kandydat ma skrótową nazwę ,,wpadającą w ucho” nazwę.

Tym razem nominowanych grafik było kilkadziesiąt. Część otrzymałem na maila, część trafiła do mnie przez tag @smarterpoland na Facebooku lub Twitterze. Aby uprościć głosowanie, wybrałem 13 grafik w czterech grupach: ,,Ach te słupki”, ,,Co tam panie w polityce”, ,,Pole minowe” i ,,Niefortunne koło”.

Niech zwycięży najlepszy!

Czytaj dalej Konkurs na najgorszy wykres 2016 roku

Równanie Choinki

bokeh_plot-1

Bibliotek i narzędzi do tworzenia interaktywnych wykresów jest cała masa. Poczynając od tych pozwalających przy odrobienie wysiłku na wyrenderowanie praktycznie każdego możliwego wykresu (D3.js), po te generujące wykresy błyskawicznie, ale ograniczone do kilku szablonów (np. NVD3). Aby przetestować elastyczność różnych narzędzi, na ostatnich zajęciach z Technik Wizualizacji Danych wykonaliśmy test choinki – w bibliotece XYZ przygotuj interaktywną choinkę.

Poniższą przygotowali Jan Dyszyński i Maksymilian Mazur z użyciem biblioteki RBokeh (a dokładniej R-owego portu do Bokeh). Kod jest tutaj, przykład poniżej, przy odrobienie zoomu można odczytać równanie tej choinki.



screen-shot-2016-12-24-at-17-30-44

Po lewej i pod tym linkiem jest choinka, której autorem jest Piotr Smuda (najedźcie myszką aby sprawdzić jakie prezenty są pod choinką).

screen-shot-2016-12-23-at-15-03-41

Tutaj jest choinka w googleVis wykonana przez panią Małgorzatę Sobczak.

Kolejna choinka jest w ggiraph. Autorką jest Dorota Łępicka a kod jest tutaj.

screen-shot-2016-12-29-at-20-16-18