Kobieta menedżer a szansa na sukces

Andrzej P. podesłał mi artykuł zatytułowany ,,Kobieta menedżer ma mniejsze szanse na awans” (artykuł tutaj). Artykuł ten jest wyjątkowo ciekawym przykładem jak nie pokazywać danych. W artykule autorka stara się nas przekonać, że kobiety menedżerki (to słowo jest już nawet w SJP) mają mniejsze szanse na awans. Przekonać ma nas o tym niezbicie pierwszy wykres.

Już nawet nie czepiam się wykresu kołowego, ani tego że jest on 3D, ani że odpowiedź która ma się najbardziej rzucać w oczy jest na czerwono. Najbardziej zdziwiony jestem, że pytanie które zostało zadane to ,,czy szanse na awans są TAKIE SAME?”. To już autorka zadecydowała że nierówność musi oznaczać faworyzowanie mężczyzn.

 

Ciekawy jest też drugi wykres prezentowany w tym artykule.

Teoretycznie z takich danych można by się dowiedzieć, które elementy są częściej wskazywane przez mężczyzn a które przez kobiety. Teoretycznie, ponieważ sposób prezentacji to uniemożliwia, trudno porównywać iloczyny długości słupków pomiędzy sobą.

Również teoretycznie można by odczytać z takich danych które elementy są uznawane za najważniejsze w sumie. Ale ponownie tylko teoretycznie, ponieważ pochyłość słupków utrudnia określenie który słupek jest dłuższy. A liczby odpowiedzi nie są podane w sumie, więc by dowiedzieć się ile osób wybrało daną odpowiedź trzeba szybko dodawać trzycyfrowe liczby.

 

Postarajmy się jednak być konstruktywni w tej krytyce. Czy można inaczej przedstawić te dane? Kod w programie R użyty do wygenerowania poniższego wykresu znajduje się tutaj.

I ten sam obrazek obrócony o 45 stopni.

Używając wykresu punktowego/rozrzutu przedstawiliśmy te same liczby, ale tym razem odczytując położenie punktów możemy porównać elementy decydujące o awansie pomiędzy sobą. Im wyżej jest kropka (dotyczy drugiego wykresu) tym częściej ten element jest wskazywany przez mężczyzn, im niżej tym częściej przez kobiety. Im bardziej na prawo jest kropka tym więcej osób w sumie uznało dany element za istotny.

 

Sugerując się komentarzami dodałem kolory. Wrzosowy i piaskowy kolor oznaczają obszary na którym jedna płeć wybiera określone elementy o ponad 20% częściej niż druga płeć. Mam nadzieję, że dzięki temu widać że niektóre elementy są preferowane przez jedną z płci.

Zmiany zamożności Polaków

Kontynuujemy analizy danych z badania Diagnoza Społeczna. Średnia pensja w Polsce rośnie szybciej nawet niż inflacja. Można więc uważać, że jest coraz lepiej.

Ten i kolejny wpis powstał ponieważ po pierwsze wyniki są ciekawe, a po drugie, ponieważ będzie okazja wprowadzić kolory w analizie gradacyjnej.

W kwestionariuszu dla gospodarstw piąte pytanie dotyczy sposobu gospodarowania dochodem, czy na wszystko wystarcza pieniędzy, czy wystarcza ale przy oszczędnym życiu, czy brakuje na coś. Będziemy poniżej porównywać odpowiedzi pomiędzy latami 2005 (kolumna “cl7″) i 2001 (kolumna “fL5″). Do porównania odpowiedzi w tych dwóch rocznikach wykorzystamy analizę gradacyjną.

Kilka linii kodu w R

i mamy następujący wykres.

Etykiety można by skrócić, ale póki są czytelne nie walczyłem z nimi. W porównaniu z rokiem 2005 w roku 2011 ubyło o około jedną trzecią osób, którym wystarcza co prawda na najtańsze jedzenie, ale nie wystarcza na inne potrzeby. Liczba osób, którym wystarcza i jeszcze oszczędzają wzrosła trzykrotnie.

Podział obowiązków w rodzinie

Dzisiaj ponownie bazujemy na danych z Diagnozy Społecznej (więcej informacji o tym zbiorze danych tutaj). W ankiecie z roku 2009 znalazło się pytanie, jaki powinien być twoim zdaniem podział obowiązków w rodzinie, w zależności od tego czy są w rodzinie dzieci i w jakim wieku (pytanie 107 kolumna ep107.1-ep107.4).

Pytanie dotyczyło w gruncie rzeczy tego, kto powinien pracować a kto nie. Z podtekstem że osoba niepracująca będzie zajmowała się domem i dziećmi.

Wyniki obrazuje poniższa tabelka, a przez resztę wpisu będziemy zastanawiać na jakim wykresie taką tabelę należy przedstawić.

W każdej kolumnie procenty grzecznie sumują się do 100%.

 

W oczy rzuca się brak symetrii, przy założeniu że ktoś powinien zrezygnować z pracy najczęściej pada na kobietę (uwaga 1: zobaczymy później jak to wygląda w rozbiciu na płeć, uwaga 2: to wyniki ankiet a nie moje opinie, feministki, proszę nie rysujcie mi lakieru na moim rowerze). Niewiele jest osób, które przy dzieciach do 6 lat model oboje rodzice pracują jest najlepszy.

Przejdźmy do wykresów. Powyżej różnych modeli podziałów obowiązków jest 6, ale w sumie interesować będą nas trzy główne: oboje rodzice na pełny etat, jeden z rodziców na część etatu, jeden z rodziców nie pracuje. Na pierwszym wykresie będziemy pokazywać zakumulowane procenty (kody w R poniżej)

 

Takie wykresy są często krytykowane ponieważ udział procentowy zielonej i fioletowej grupy ciężko porównać z uwagi na przesunięty punkt 0. Drugi częsty powód krytyki to łączenie odcinkami procentów, które sugeruje że jest jakiś trend (liniowy) w wynikach pomiędzy kategoriami.

Tak więc nawet jeżeli graficznie ten wykres mi się najbardziej podoba wypada zobaczyć jeszcze kilka innych wariantów.

Wykres paskowy, bez sugestii co do liniowości trendu.

I jeszcze jeden paskowy, ale bez skumulowania procentów

I jeszcze wykres punktowy. W teorii wykres punktowy łatwiej czytać niż powyższy, ponieważ oś OY nie jest tak szeroka.

Cztery wykresy. Podejrzewam że każdy znajdzie swojego amatora. A wracając do treści pokazywanej na tych wykresach to następnym razem wrócimy do tematu jak te proporcje zmieniają się w grupach wiekowych i płciach.

 

Co jest ważne w życiu? w zależności od wieku

Cztery dni temu (tutaj) badaliśmy jak zmieniały się wartości ważne w życiu, bazując na danych z Diagnozy Społecznej. Można jednak przypuszczać że to co jest ważne w życiu zależy od wielu czynników, ale z pewnością równiez od wieku.

Więc powtórzyliśmy analizę gradacyjną w czterech grupach wiekowych. najpierw zbadaliśmy kwartyle roku urodzenia i dało nam to cztery mniej więcej równoliczne grupy respondentów, urodzonych w latach: 1910 – 1952, 1952-1971, 1971-1987, 1987-2011.

Grupa wiekowa 1910-1952.

 

W grupie 1951-1971.

W grupie 1971-1987

W grupie 1987 – 2011

 

Z powyższych wykresów wynikają przynajmniej dwie rzeczy:

– najsilniej zmienia się system wartości ludzi w wieku 30-40 lat. Odległość krzywej od przekątnej jest największa. Analiza gradacyjna dowiodła swojej wartości w wyraźny sposób podsumowując wielkość zmian. Dla respondentów w wieku 30-40 liczą się i to coraz bardziej dzieci i udane małżeństwo.

– zmieniają się też rzeczy uznawane za ważne. W grupie osób najmłodszych wysokie miejsce zajmują pieniądze i praca, a starszych grupach i pieniądze i płacę wyprzedzają udane małżeństwo i dzieci.

 

Co jest ważne w pracy?

Dwa  dni temu pokazywaliśmy przykład analizy gradacyjnej w badaniu co jest ważne w życiu. Dziś zobaczymy co dla ankietowanych jest ważne w pracy. W latach 2007 i 2011 zadano respondentom pytanie o to co jest ważne w pracy. Podobnie jak w przypadku wartości ważnej w życiu, można było wybrać maksymalnie trzy cechy dorej pracy (z listy: Brak napięć i stresów, Duza samodzielnosc, Możliwość rozwoju osobistego, Praca zgodna z umiejetnosciami, Możliwość szybkiego awansowania, Stabilnosc zatrudnienia, Dogodne godziny pracy, Możliwość wykonywania pracy w domu, Dlugi urlop, Zajecie powazane przez ludzi, Odpowiednia płaca, Inne czynniki).

Używając tych samych technik co ostatnio, sprawdzimy czy oczekiwania w stosunku do pracy sie zmienily.

 

Po prawej stronie przedstawiono dla każdej cechy dotyczącej pracy informacje jaka frakcja osób uznała tę cechę za ważną. Po lewej stronie mamy wynik jednowymiarowej analizy gradacyjnej.

Zauważmy na początek że odległość tej krzywej od przekątnej, jest dużo większa niz w przypadku pytan o to co ważne w życiu. Wydaje sie to zgodne z intuicja ze pogląd dotyczący wartości waznych w zyciu zmienia sie wolniej niz dotyczacy wartosci waznych w pracy.

Największe zmiany dotyczyły wzrostu liczby osob uwazajacych ze wazna jest stabilnosc zatrudnienia (z 11.8% do 19% a więc zmiana o ponad 60%), duża samodzielnośc w pracy, brak napiec i stresow. Mniej osób za najważniejsze wymienia odpowiednia place czy prace zgodna z umiejętnościami. Mam nadzieje ze jest to zwiazane z tym ze podstawowe potrzeby zwiazane z wystarczająca placa i zatrudnieniem w odpowiednim miejscu zostaly zaspokojone i teraz osoby mogą sie skupic na wyzszych potrzebach. Moze to tez byc związane z rosnacym wiekiem respondentów, sa o 4 lata starsi moga juz cenic inne rzeczy.

Warto zrobic taka analize w podziale na grupy wiekowe, moze wiec wrocimy do tego tematu nastepnym razem.

 

Co jest w życiu ważne?

Ostatnio moi magistranci na mini-seminarium prezentowali jednowymiarową analizę gradacyjną. Służyć może ona między innymi do porównania czy pomiędzy dwoma wektorami obserwacji zmieniła się struktura odpowiedzi. Wygląda to na ciekawą metodę, więc warto ją zaimplementować w R i zobaczyć jak dziala.

Kilka dni temu pisaliśmy o zbiorze Diagnoza Społeczna (http://smarterpoland.pl/index.php/2011/10/diagnoza-spoleczna-2011/), już dołączony do repozytorium. Wykorzystamy go na potrzeby badania analizy gradacyjnej.

W latach 2005 i 2009 w Diagnozie Społecznej ankieterzy pytali respondentów o wskazanie wartości ważnych w ich życiu (zmienne cp2.1-cp2.14 i ep2.1-ep2.14) . Badany mógł wybrać maksymalnie trzy odpowiedzi ze zbioru 14 możliwych (PIENIADZE, DZIECI, UDANE MALZENSTWO, PRACA, PRZYJACIELE, OPATRZNOSC, BOG, POGODA DUCHA, OPTYMIZM, UCZCIWOŚĆ, ŻYCZLIWOŚĆ I SZACUNEK OTOCZENIA, WOLNOSC, SWOBODA, ZDROWIE, WYKSZTALCENIE, SILNY CHARAKTER, INNE). Wykorzystamy analizę gradacyjną by sprawdzić czy zmieniła się struktura wartości w badanej grupie respondentów w przeciągu czterech lat.

Zaczniemy od analizy dwóch czternastoelementowych wektorów. Każdy wektor określi jaka frakcja osób uznała daną wartość za ważną w ich życiu. Porównamy oba wektory, by sprawdzić które wartości zyskały, a które straciły na znaczeniu pomiędzy rokiem 2009 a 2005.

 

 

Kod generujący powyższy rysunek znajduje się poniżej. Po lewej prezentowane są wyniki analizy gradacyjnej, po prawej zwykły wykres rozrzutu. Oba wykresy prezentują te same dane.

Zacznijmy od prawego wykresu. Frakcje osób uznających daną wartośc za ważną unormowano tak, by po zsumowaniu wszystkich wartości otrzymać 1. Osobno dla roku 2005 osobno dla 2009. Każdy punkt opisuje jedną wartość. Współrzędne punktu odpowiadają unormowanej frakcji osób uznających tą wartość za ważną w roku 2005 i 2009. Dorysowano przekątną, dzięki temu punkty pod przekątną odpowiadają wartościom których znaczenie spadło do roku 2009, punkty nad odpowiadają wartosciom których znaczenie wzrosło.

Po lewej stronie przedstawiono te frakcje w sposób skumulowany. Kolejność odpowiada procentowej zmianie ważności w stosunku do roku 2009. Na początku wykresu, przy punkcie 0,0 znajdują się wartości, które zyskały na znaczeniu. Pod koniec wartości, ktore stracily na znaczeniu. Długość kroku odpowiada frakcji osob uznających daną wartość za ważną. Odległość wyrysowanej łamanej od przekątnej obrazuje jak bardzo zmieniła się struktura wartości. W tym przypadku łamana jest blisko przekątnej, więc ludzie nie zmienili istotnie swojego systemu wartości. Dzieci i zdrowie zyskały na ważności. Pieniądze i praca straciły, choć w obu przypadkach nie są to duże zmiany.

 

Diagnoza Społeczna 2011

Diagnoza społeczna to badanie prowadzone przez radę monitoringu społecznego od roku 2000. Więcej informacji o tym badaniu można znaleźć na stronie http://diagnoza.com/. Jest to badanie panelowe, dane zbierane są co 2-3 lata. Niedawno pojawiły się dane  z edycji 2011. Badane jest bardzo wiele parametrów, można naprawdę prześledzić co ciekawego działo się w Polsce przez ostatnie 11 lat. Te dane nadają się świetnie na ćwiczenia ze statystycznej analizy danych dla studentów i nie tylko. Tydzień temu Paweł Teisseyre z IPIPANu używał tego zbioru danych do demonstrowania regularyzowanej wersji regresji logistycznej w R na WZUR 4.0.

Dane są publicznie dostępne. Niestety na stronie projektu dane są w postaci plików programu SPSS. Na potrzeby tego bloga zostały przekonwertowane do formatu programu R.

Katalog z danymi znajduje się tutaj.

Dane podzielone są na dwa zbiory, z opisem gospodarstw domowych i opisem osób o wieku ponad 16 lat zamieszkujących w tych gospodarstwach.

Dane o gospodarstwach można ściągnąć w postaci pliku RData, pliku w formacie csv oraz pliku z opisami kolumn, w zbiorze danych jest 20655 wierszy i 1820 kolumn.

Dane o osobach  można ściągnąć w postaci pliku RData, pliku w formacie csv oraz pliku z opisami kolumn, w zbiorze danych jest 65373 wierszy i 2427 kolumn.

Skrypt wczytujący dane dostępny jest tutaj.

Na stronach projektu znaleźć można obszerne raporty które na kilkuset stronach prezentują tysiące wniosków i dziesiątki rysunków. Postaram się w najbliższej przyszłości umieścić kilka celowanych wizualizacji tak by na jednym rysunku upakować całą historię. Jeżeli studenci coś ciekawego na tym zbiorze danych zrobią to też dodam do bloga.

 

Cytowanie:   Rada Monitoringu Społecznego (2011). Diagnoza społeczna: zintegrowana baza danych. www.diagnoza.com 20-X-2011;

 

Zmiany zamożności Polaków na kolorowo

Trzy dni temu pisaliśmy o tym jak zmienia się zamożność gospodarstw badanych w ramach Diagnozy Społecznej (ponad 20 tys gospodarstw).
Generalny wniosek jest taki, że coraz więcej gospodarstw domowych poprawiło swój standard przez ostatnie 6 lat (porównywaliśmy wyniki z lat 2005 i 2011). Zobaczmy jak ta sytuacja wygląda w rożnych województwach.
Na poniższych wykresach wykonamy analizę gradacyjną, kolorami zaznaczając wyniki różnych województw.


Aby było czytelniej wybraliśmy pięć województw, dla których wyniki były ciekawe. Są to województwa Zachodni-pomorskie, Mazowieckie, Dolnośląskie, Lubuskie i Świętokrzyskie. Etykiety zamiast przy punktach zostały umieszczone w prawej dolnej legendzie. Jak czytać te wykresy? Ponieważ odpowiedzi są w skali uporządkowanej możemy interpretować bezpośrednio położenie k-tego punktu,  anie tylko ścieżkę do niego prowadzącą (jak na poprzednich przykładach).
Etykieta 5 oznacza, że wystarcza tylko na najtańsze jedzenie, ubranie, opłaty, kredyt. Ponieważ na wykresie współrzędne punktów to skumulowane częstości dla danego i niższych poziomów, więc współrzędne punktów z etykietą 5 oznaczają frakcję osób, którym starcza tylko na najtańsze jedzenie, kredyt, ubrania lub i na to nie. W województwie zachodnio-pomorskim w roku 2005 takich osób było około 40% (współrzędna OX brązowej 5), ale w roku 2011 było już takich osób niewiele ponad 20%. Praktycznie w każdym z narysowanych województw współrzędna OY dla cyfry 7 to 80%, co oznacza, że w roku 2011 80% gospodarstw w tych województwach deklarowało, że muszą żyć oszczędnie, bardzo oszczędnie a czasem i to nie wystarcza. W roku 2005 procent takich deklaracji był wyższy w każdym z województw, najwięcej spadł w Świętokrzyskim z około 90%.

Im dalej punkt od przekątnej tym większa zmiana do tego poziomu. Przykładowo różowa 6 ilustruje, że w województwie Lubuskim osób które żyją bardzo oszczędnie a i to czasem nie starcza było ponad 60% w roku 2005 a w 6 lat później było ich już tylko około 40%.

Mniejsze zmiany dotknęły województw Mazowieckiego i Dolnośląskiego.

Na zakończenie wykres dla wszystkich województw, dosyć gęsty, 16 krzywych zachodzi na sobie co utrudnia odcyfrowywanie wyników. W każdym województwie krzywa jest w większości pod przekątną co znaczy, że jest raczej lepiej niż przed 6 laty.

 

Zbiór danych opisujący jakość uczelni wyższych w Polsce

Kilka dni temu rzeczpospolita umieściła bardzo ciekawy ranking uczelni wyższych w Polsce. Oryginalny zbiór danych znajduje się tutaj. Dużo pracy włożono by zebrać te 3330 liczb które przedstawiono w tym rankingu, szkoda tylko, że jedyne co z nimi zrobiono to konstrukcja rankingu który z założenia nie ma sensu. Jak można w porządku liniowym ułożyć Uniwersytet i Wyższą szkołę Pożarnictwa albo Akademię Medyczną?

Nie można.

Nie można też (o ile się nie jest chory na autyzm) objąć umysłem wszystkich 3330 liczb. Można za to wykorzystać ten zbiór danych do wizualizacji, redukcji wymiarowości, i analizy składowych głównych. Zapowiada się więc świetna zabawa, znaleźć regułę tworzenia rankingu by uczelnia na której się studiuje/pracuje była pierwsza.

Link do katalogu z danymi znajduje się tutaj. Skrypt R wczytujący dane bezpośrednio z internetu znajduje się tutaj. Dane w formacie CSV znajdują się tutaj.

Ile Polacy zyskali/stracili

Prowadzilem kiedys zajecia poświęcone wizualizacji danych i na potrzeby tych zajęć tropiłem wykresy które, trudno poprawnie odczytać (z woli lub niewiedzy autora).

Tak więc gdy dzisiaj na stronie Wyborczej znalazłem poniższy wykres poczułem nieopanowaną chęć wrzucenia go tutaj  dla potomnych.

W artykule http://wyborcza.biz/biznes/1,101716,10310225,POPiS_owe_obiecanki_cacanki___tyle_obiecali__to_zrobili.html znajduje się wielce ciekawy wykres

Zatytułowany ile miesięcznie zyskali/stracili Polacy. Wydać wyraźniej, że najbogatsi najbardziej za PO, wiadomo żę w złotych i że miesięcznie tylko nie nie jest jasne czy zyskali czy stracili.

Ale może to tylko kwestia smaku, przepraszam, znaku.