R, Kair, Cairo, wiek a liczba lat nauki

Dziś będzie o wielu tematach jednocześnie.
Po pierwsze przeglądając materiały z konferencji useR znalazłem informacje o pakiecie Cairo. Wstyd, że o tym pakiecie dowiedziałem się tak późno. Ale ciesze się że się dowiedziałem wystarczająco by napisać dlaczego.

Cairo to biblioteka do grafiki 2d umożliwiająca zapisywanie grafiki do różnych formatów, między innymi wektorowych formatów PS, PDF, SVG, ale również do rastrowych formatów PNG itp. Biblioteka pozwala na stosowanie takich miłych technik jak anty-aliasing itp. poprawiających wygląd grafiki, szczególnie rastrowej, szczególnie w porównaniu z tym co R produkuje domyślnie. Zobaczmy czy biblioteka ta odmieni rysunki na tym blogu. Zaczniemy od prostego przykładu, w którym porównamy liczbę lat nauki z liczbą przeżytych lat, oczywiście bazując na zbiorze danych o Diagnozie społecznej.

Aby nie zaciemniać tego co najważniejsze, nie będę tutaj wklejał kodu R, który generuje wykres. Osoby zainteresowane znajdą ten kod tutaj. W kodzie tym wykorzystujemy funkcję xyplot() z pakietu lattice do wygenerowania obiektu wyk opisującego wykres.

Porównamy wygląd grafiki zapisanej poleceniami png(grDevices), CairoPNG(Cairo) i CairoSVG(Cairo). W przypadku tej ostatniej funkcji rozmiary podajemy w calach, w poprzednich dwóch w pixelach.

Poniżej wygenerowane pliki. Pierwszy w formacie png wygenerowany przez funkcję png.

Drugi w formacie png ale wygenerowany biblioteka Cairo.

I trzeci w formacie SVG, nie każda przeglądarka potrafi go wyświetlić, jeżeli poniżej nie widać obrazka to znaczy że trzeba zmienić przeglądarkę.

Czy widać różnice? Ogromne, szczególnie na krzywych które w pierwszym przypadku są niesamowicie spixelowane w drugim przypadku już znacznie gładsze. Widać to szczególnie w dużym powiększeniu. W dużym powiększeniu widać też zalety wektorowego formatu SVG, krzywe będą gładkie bez względu jak bardzo je powiększymy. Oczywiście za format wektorowy trzeba zapłacić. W zbiorze danych Diagnoza Społeczna znajdują się dane dla kilku tysięcy osób. Gdyby każdą z nich zaznaczyć punktem to wektorowy format w którym każdy z tych punktów byłby opisany, zajmowałby kilkanaście MB. Nie najlepiej jak na grafikę do umieszczenia w internecie. Dlatego też na trzecim z powyższych obrazków są tylko krzywe bez punktów.

Dyskusje o technikaliach mamy już za sobą, zobaczmy co w ogóle widać na tych wykresach. Porównujemy liczbę lat nauki versus wiek. Dane bierzemy zarówno dla osób ankietowanych w roku 2000 jak i 2011. Znaczna część osób uczestniczy w obu badaniach, dla tej grupy spodziewamy się, że lat przybędzie ale lat nauki niekoniecznie.
Ciągła linią zaznaczyłem wygładzona medianę, kropkowaną linią wygładzony kwantyl rzędu 90%.

Dla osób które obecnie są w wieku 40-60 lat, mediana liczby lat edukacji to 11, dla osób w wieku 25 lat ta mediana jest już o 2 lata wyższa, efekt coraz większej liczby osób studiujących i też zmian w systemie edukacji. Niższą medianę liczby lat edukacji u osób w wieku >70 lat można wytłumaczyć wojną.

Przyjrzyjmy się jeszcze kwantylowi rzędu 90%. Dla 30latków kwantyl ten wynosi 18 lat nauki, czyli ponad 10% dzisiejszych 30latków ma na koncie 18 lub więcej lat nauki. To sporo, ale dla niektórych uczenie się nigdy się nie kończy. W stosunku do stanu sprzed 11 lat coraz więcej lat spędzamy na edukacji. Czy jako społeczeństwo jesteśmy dzięki temu mądrzejsi?

Zmiana dochodów w ostatnich 8 latach w podziale na płeć

Analiza zróżnicowania dochodów bardzo mnie interesuje. To jednak większy temat i poświęcimy mu więcej czasu kiedy indziej. Dziś chciałbym podzielić się jednym wykresem, na którym zobaczymy jak wyglądał rozkład dochodu netto ankietowanego w zależności od wieku i w zależności od płci, tak w roku 2003 jak i w roku 2011. Oczywiście złotówka dzisiaj i wtedy to dwie różne złotówki, nie sposób przeliczyć siły nabywczej teraz i wtedy bo zależy ona od koszyka zakupów. Inaczej wyglądała zmiana cen artykułów luksusowych, inaczej zmiana cen jedzenia a inaczej zmiana cen mieszkań. W każdym razie na potrzeby tego rysunku wykorzystam wskaźnik inflacji dla tych 8% wynoszący 23.7% (na podstawie http://blog.opiekuninwestora.pl/index.php/inflacja/). Więc przedstawiane ceny to albo ceny podane w roku 2011, albo ceny podane w roku 2003 i skorygowane o inflacje.

W poniższych ilustracjach nie analizujemy osobno osób żyjących samotnie (tzw singli), par bez dzieci (DINKs) i par z dziećmi, choć pewnie pomiędzy tymi trzema grupami są znaczne różnice, ale nie wszystko na raz.

Ciągła linia to wygładzona ocena mediany, przerywana to kwantyl rzędu 90%.
Dużych niespodzianek nie ma, ale niektóre wyniki są ciekawe.
Po pierwsze, nawet po uwzględnieniu inflacji zarobki wzrosły (nie tylko ankietowanych, bo to jest oczekiwane, ale tez rozkład zarobków w grupie wiekowej np 30 latków). I to wzrosły znacznie. Oby związane to było z większa produktywnością a nie spadkiem wartości złotówki.
Po drugie kobiety zarabiają mniej. Dotyczy to i medianowych zarobków i kwantyla 90%.
Po trzecie, i chyba najciekawsze, w roku 2011 wyraźnie widać, że najwyższe dochody uzyskują osoby w wieku 30-40 lat.
Biorąc pod uwagę, że oś oY jest logarytmiczna, zarówno osoby młodsze jak i starsze zarabiają znacznie mniej. U kobiet ten okres wyższych dochodów kończy się wcześniej niż u mężczyzn, ale u obu płci kończy się czy to patrząc na medianę czy na kwantyl 90%.
Inaczej było w roku 2003. Nie było wtedy tak dużych dysproporcji związanych z wiekiem, szczególnie jeżeli porównywać mediany dochodów. Ciekawe czy to zróżnicowanie będzie się jeszcze pogłębiało.

To pierwsza ilustracja. Czas na dokładniejsze drążenie tematu. Kierunków badania czynników różnicujących wysokość dochodów jest dużo. Może macie propozycje od czego zacząć?

Zmiany zamożności Polaków

Kontynuujemy analizy danych z badania Diagnoza Społeczna. Średnia pensja w Polsce rośnie szybciej nawet niż inflacja. Można więc uważać, że jest coraz lepiej.

Ten i kolejny wpis powstał ponieważ po pierwsze wyniki są ciekawe, a po drugie, ponieważ będzie okazja wprowadzić kolory w analizie gradacyjnej.

W kwestionariuszu dla gospodarstw piąte pytanie dotyczy sposobu gospodarowania dochodem, czy na wszystko wystarcza pieniędzy, czy wystarcza ale przy oszczędnym życiu, czy brakuje na coś. Będziemy poniżej porównywać odpowiedzi pomiędzy latami 2005 (kolumna „cl7”) i 2001 (kolumna „fL5”). Do porównania odpowiedzi w tych dwóch rocznikach wykorzystamy analizę gradacyjną.

Kilka linii kodu w R

i mamy następujący wykres.

Etykiety można by skrócić, ale póki są czytelne nie walczyłem z nimi. W porównaniu z rokiem 2005 w roku 2011 ubyło o około jedną trzecią osób, którym wystarcza co prawda na najtańsze jedzenie, ale nie wystarcza na inne potrzeby. Liczba osób, którym wystarcza i jeszcze oszczędzają wzrosła trzykrotnie.

Podział obowiązków w rodzinie

Dzisiaj ponownie bazujemy na danych z Diagnozy Społecznej (więcej informacji o tym zbiorze danych tutaj). W ankiecie z roku 2009 znalazło się pytanie, jaki powinien być twoim zdaniem podział obowiązków w rodzinie, w zależności od tego czy są w rodzinie dzieci i w jakim wieku (pytanie 107 kolumna ep107.1-ep107.4).

Pytanie dotyczyło w gruncie rzeczy tego, kto powinien pracować a kto nie. Z podtekstem że osoba niepracująca będzie zajmowała się domem i dziećmi.

Wyniki obrazuje poniższa tabelka, a przez resztę wpisu będziemy zastanawiać na jakim wykresie taką tabelę należy przedstawić.

W każdej kolumnie procenty grzecznie sumują się do 100%.

 

W oczy rzuca się brak symetrii, przy założeniu że ktoś powinien zrezygnować z pracy najczęściej pada na kobietę (uwaga 1: zobaczymy później jak to wygląda w rozbiciu na płeć, uwaga 2: to wyniki ankiet a nie moje opinie, feministki, proszę nie rysujcie mi lakieru na moim rowerze). Niewiele jest osób, które przy dzieciach do 6 lat model oboje rodzice pracują jest najlepszy.

Przejdźmy do wykresów. Powyżej różnych modeli podziałów obowiązków jest 6, ale w sumie interesować będą nas trzy główne: oboje rodzice na pełny etat, jeden z rodziców na część etatu, jeden z rodziców nie pracuje. Na pierwszym wykresie będziemy pokazywać zakumulowane procenty (kody w R poniżej)

 

Takie wykresy są często krytykowane ponieważ udział procentowy zielonej i fioletowej grupy ciężko porównać z uwagi na przesunięty punkt 0. Drugi częsty powód krytyki to łączenie odcinkami procentów, które sugeruje że jest jakiś trend (liniowy) w wynikach pomiędzy kategoriami.

Tak więc nawet jeżeli graficznie ten wykres mi się najbardziej podoba wypada zobaczyć jeszcze kilka innych wariantów.

Wykres paskowy, bez sugestii co do liniowości trendu.

I jeszcze jeden paskowy, ale bez skumulowania procentów

I jeszcze wykres punktowy. W teorii wykres punktowy łatwiej czytać niż powyższy, ponieważ oś OY nie jest tak szeroka.

Cztery wykresy. Podejrzewam że każdy znajdzie swojego amatora. A wracając do treści pokazywanej na tych wykresach to następnym razem wrócimy do tematu jak te proporcje zmieniają się w grupach wiekowych i płciach.

 

Co jest ważne w życiu? w zależności od wieku

Cztery dni temu (tutaj) badaliśmy jak zmieniały się wartości ważne w życiu, bazując na danych z Diagnozy Społecznej. Można jednak przypuszczać że to co jest ważne w życiu zależy od wielu czynników, ale z pewnością równiez od wieku.

Więc powtórzyliśmy analizę gradacyjną w czterech grupach wiekowych. najpierw zbadaliśmy kwartyle roku urodzenia i dało nam to cztery mniej więcej równoliczne grupy respondentów, urodzonych w latach: 1910 – 1952, 1952-1971, 1971-1987, 1987-2011.

Grupa wiekowa 1910-1952.

 

W grupie 1951-1971.

W grupie 1971-1987

W grupie 1987 – 2011

 

Z powyższych wykresów wynikają przynajmniej dwie rzeczy:

– najsilniej zmienia się system wartości ludzi w wieku 30-40 lat. Odległość krzywej od przekątnej jest największa. Analiza gradacyjna dowiodła swojej wartości w wyraźny sposób podsumowując wielkość zmian. Dla respondentów w wieku 30-40 liczą się i to coraz bardziej dzieci i udane małżeństwo.

– zmieniają się też rzeczy uznawane za ważne. W grupie osób najmłodszych wysokie miejsce zajmują pieniądze i praca, a starszych grupach i pieniądze i płacę wyprzedzają udane małżeństwo i dzieci.

 

Co jest ważne w pracy?

Dwa  dni temu pokazywaliśmy przykład analizy gradacyjnej w badaniu co jest ważne w życiu. Dziś zobaczymy co dla ankietowanych jest ważne w pracy. W latach 2007 i 2011 zadano respondentom pytanie o to co jest ważne w pracy. Podobnie jak w przypadku wartości ważnej w życiu, można było wybrać maksymalnie trzy cechy dorej pracy (z listy: Brak napięć i stresów, Duza samodzielnosc, Możliwość rozwoju osobistego, Praca zgodna z umiejetnosciami, Możliwość szybkiego awansowania, Stabilnosc zatrudnienia, Dogodne godziny pracy, Możliwość wykonywania pracy w domu, Dlugi urlop, Zajecie powazane przez ludzi, Odpowiednia płaca, Inne czynniki).

Używając tych samych technik co ostatnio, sprawdzimy czy oczekiwania w stosunku do pracy sie zmienily.

 

Po prawej stronie przedstawiono dla każdej cechy dotyczącej pracy informacje jaka frakcja osób uznała tę cechę za ważną. Po lewej stronie mamy wynik jednowymiarowej analizy gradacyjnej.

Zauważmy na początek że odległość tej krzywej od przekątnej, jest dużo większa niz w przypadku pytan o to co ważne w życiu. Wydaje sie to zgodne z intuicja ze pogląd dotyczący wartości waznych w zyciu zmienia sie wolniej niz dotyczacy wartosci waznych w pracy.

Największe zmiany dotyczyły wzrostu liczby osob uwazajacych ze wazna jest stabilnosc zatrudnienia (z 11.8% do 19% a więc zmiana o ponad 60%), duża samodzielnośc w pracy, brak napiec i stresow. Mniej osób za najważniejsze wymienia odpowiednia place czy prace zgodna z umiejętnościami. Mam nadzieje ze jest to zwiazane z tym ze podstawowe potrzeby zwiazane z wystarczająca placa i zatrudnieniem w odpowiednim miejscu zostaly zaspokojone i teraz osoby mogą sie skupic na wyzszych potrzebach. Moze to tez byc związane z rosnacym wiekiem respondentów, sa o 4 lata starsi moga juz cenic inne rzeczy.

Warto zrobic taka analize w podziale na grupy wiekowe, moze wiec wrocimy do tego tematu nastepnym razem.

 

Parsowanie stron HTML, meta-analiza, rak jelita i oczywiście obrazek

Dostałem dzisiaj pytanie od Macieja B. o kod użyty do wyciągania danych z portalu otomoto.pl.
Jak będę miał chwilę to ten kod wygładzę i opiszę na blogu, ale przy okazji dziś wpadłem na ciekawą funkcję służącą do parsowania danych, więc się nią podzielę.

Chodzi o funkcję readHTMLTable() z pakietu XML. Pozwala ona na wyciągnięcie danych z pliku HTML i wczytanie ich automatycznie do R.
Cool!
Jako przykład wykorzystamy zbiór danych o zachorowalności na nowotwór jelit w Wielkiej Brytanii, więcej o tym zbiorze danych i jego analizie przeczytać można na stronie http://blog.ouseful.info/2011/10/31/power-tools-for-aspiring-data-journalists-r/.

Poniższy fragment kodu wczytuje dane bezpośrednio ze strony HTML, dodaje nazwy kolumn i zmienia typy na liczbowe.

Skoro już ten zbiór danych wczytaliśmy to może jeszcze słowo komentarza skąd meta-analiza w nazwie tego wpisu. Zacznijmy od przedstawienia częstość zachorowań na nowotwór jelit na 100 tys mieszkańców a liczbę osób zamieszkałych na obszarze w którym ta częstość jest liczona.

Dla małych miejscowości ocena częstości zachorowań obarczona jest większą przypadkowością, jeżeli mamy miasto o 100 mieszkańcach i jeden zachoruje to unormowana częstość skacze do 1000 na 100 tys. nawet jeżeli nie jest to obszar szczególnie narażony na podwyższone ryzyko. Dla zaludnionych obszarów takie losowe fluktuacje mają mały wpływ. Zmierza to w kierunku meta-analizy w której na podstawie pomiarów z wielu obszarów ocenilibyśmy oczekiwaną zmienność dla obszaru o zadanym zaludnieniu i porównywali ją z obserwowaną wartością, tutaj zachorowalności, na danym obszarze.

Na powyższym wykresie widać, że patrząc na częstość zachorowań Glasgow ma podobną zachorowalność jak Orkney Islands, ale jeżeli dodatkowo uwzględni się liczbę osób zamieszkałych na obu obszarach to Orkney Islands ma zachorowalność mieszczącą się w granicach losowych fluktuacji, a dla Glasgow zachorowalność ta jest znacząco powyżej oczekiwanej na bazie pomiarów z całego kraju. Ciekawe prawda. Kiedyś o meta-analizie napiszę więcej, bo warto. Co ciekawe o wykresie tunelowym (funnel-plot) bez skrępowania piszą w Wielkiej Brytanii takie gazety jak Guardian (http://www.guardian.co.uk/commentisfree/2011/oct/28/bad-science-diy-data-analysis). Jak widać nawet duże dzienniki mogą serwować rzetelne informacje a nie tylko plotki o tym co nowego u celebrytów.

 

Rysujemy rozkład cen krok po kroku, część 4

Czas na ostatnią część wyjaśnień krok po kroku jak konstruowane były wykresy o cenach mieszkań.
Tym razem wykorzystamy wykres pudełkowy pokazany na wpisie tutaj do pokazania rozkładów cen w dzielnicach Warszawy.

Wczytujemy pierwsze 33 linie kodu z poprzedniego wpisu a następnie uruchamiamy linie 142-187. Wyjaśnijmy od razu po co była funkcja nazwyIprocenty(). Otóż w pakiecie lattice dosyć łatwo narysować wykres w podziale na poziomy pewnej zmiennej grupującej. Grupa obserwacji odpowiadająca poszczególnym poziomom rysowana jest na kolejnym panelu. Nazwy poziomów znajdują się w nagłówku panelu. W naszym przykładzie funkcja nazwyIprocenty() zmieniła nazwy wszystkich poziomów w ten sposób, że do nazw dzielnic dodano cztery liczby określające procentową zmianę ceny w określonej dzielnicy (zmianę liczoną na różne sposoby, zobacz komentarze wewnątrz tej funkcji).

Dzięki temu warunkując po zmiennej dzielnica2 powinniśmy uzyskać zbiór wykresów pudełkowych w rozbiciu na dzielnicę.
Poniższy kod od kodu z poprzedniego wpisu różni się praktycznie wyłącznie formułą cenam2~dataF|dzielnica2.

Wadą tego wykresu są ponownie dzielnice w których mało jest oferowanych mieszkań. Usuńmy dzielnice w których jest mniej niż 1000 mieszkań średniej wielkości oferowanych do sprzedaży w ostatnich 4 latach. Poniżej prezentujemy tylko kod usuwający odpowiednie wiersze, następnie używamy tego samego kodu co powyżej aby wygenerować wykres dla dzielnic, tym razem już tylko 12.

Rysujemy rozkład cen krok po kroku, część 3

Dzisiaj kontynuujemy rozpisywanie krok po kroku wizualizacji cen mieszkań. Ten wpis poświęcony jest wykresowi pudełkowemu. Kory w programie R użyte poniżej można znaleźć na stronie tutaj.

Podobnie jak poprzedni pierwsza część to przygotowanie danych, druga to ich wizualizacja.

Częśc 1.

Dane są wczytane, czas na wykres. Wykorzystamy funkcję bwplot() z pakietu lattice.
Narysujemy jak zmieniają się ceny m2 średniej wielkości mieszkań w kolejnych miesiącach.

Nie wygląda to najlepiej, zajmijmy się na początek osiami. Ponieważ cena jest zmienną silnie prawo skośną, przedstawimy ją na osi logarytmicznej. Ponieważ etykiety na osi OX zachodzą na siebie to zmniejszymy je i pokażemy pionowo.

Przy takiej rozpiętości na osi OY trudno analizować delikatne zmiany w cenach mieszkań, więc w dalszej części zawęzimy zainteresowania do przedziału osi OY od 7 do 14k.

Trudno zauważyć jakiś trend. Dorysujmy więc krzywą trendu liniowego przedefiniowując funkcję rysującą panel. Nowa funkcja rysująca panel rysuje linie pomocnicze siatki, rysuje wykresy pudełkowe używając panel.bwplot() oraz dorysowuje linię odpornej regresji liniowej.

Trend liniowy liczony na wszystkich punktach to tylko jedno z możliwych podejść do zagadnienia oceny trendu. Dodajemy trend lokalnie ważony wielomianami stopnia pierwszego oraz trend liniowy wyznaczony tylko na podstawie median cen w kolejnych miesiącach.

Mało czytelne są te linie trendu. Narysujemy je grubszą kreską i dodatkowo użyjemy kolorów z pakietu RColorBrewer, które powinny być przyjemniejsze dla oka.

Solą w oku są już tylko te niebieskie wykresy pudełkowe, lepiej wyglądałyby one w kolorze szarym, mają być tłem dla linii trendu. Aby zmienić kolor tych punktów używamy funkcji trellis.par.set() i trellis.par.get().

Już jest nieźle. Ostatnia modyfikacja wykresu to dodanie opisu wykresu z liczbą procent o który zmieniła się cena mieszkania. Konstruujemy funkcję, która te procenty wyliczy i doklei do nazwy dzielnicy. Przy da się to do kolejnego przykładu, tutaj wyglądać może trochę sztucznie.

Wykres gotowy, w kolejnym odcinku pokażemy jak wygenerować taki wykres dla wszystkich dzielnic.

Rysujemy rozkład cen krok po kroku, część 2

Kontynuując temat z wczoraj, narysujemy rozkład cen mieszkania dla każdej z  dzielnic Warszawy.

Punktem wyjścia jest przygotowanie danych, wykonajmy pierwsze 32 linie tak jak w poprzednim wpisie.

Aby wyświetlić na rożnych panelach dane dla kolejnych dzielnic, wystarczy zmodyfikowac formułę na cenam2~data|dzielnica, oraz za zabiór danych wskazać mieszkaniaKWW2011Warszawa2.

Kolejne panele przedstawiają kolejne dzielnice, ale ich kolejność jest alfabetyczna. Taka sama jak kolejność poziomów zmiennej czynnikowej dzielnica. Nie zawsze kolejność alfabetyczna będzie najlepsza. Użyjemy funkcji reorder by zmienić kolejność poziomów tak by odpowiadała medianie ceny metra kwadratowego w danej dzielnicy. Kod generujący obrazek będzie taki sam, zmieni się tylko kolejność dzielnic.

Dla niektórych dzielnic jest mało punktów, co powoduje, że trudno mieć zaufanie do wyznaczonego trendu. Tym razem usuniemy te dzielnice, dla których nie ma przynajmniej 2000 wierszy. Kod generujący wykres jest bez zmian, usuwamy tylko obserwacje z dzielnic w których obserwacji było mniej niż 2k.