MI2 @ Data Science Summit (x5) – już za tydzień


Już za tydzień na wydziale MiNI Politechniki Warszawskiej odbędzie się konferencja Data Science Summit.

Aż trudno uwierzyć, że to dopiero trzecia edycja. Z roku na rok rośnie w zawrotnym tempie ściągając ciekawych prelegentów i uczestników z Polski i zagranicy. Dziś jest to jedna z największych konferencji Data Science w regionie.

Rada programowa DSS miała nie lada zadanie by wybrać z ponad 160 zgłoszeń te, które porwą uczestników konferencji (a ma ich być rekordowo wielu). Zgłoszone tematy są bardzo ciekawe i różnorodne (pełny program). Mnie szczególnie cieszy szeroka reprezentacja współpracowników z MI2 DataLab na tej konferencji.
Znajdziecie nas na tych prezentacjach:

W bloku NLP w godzinach 11:00 – 11:30 Barbara Rychalska i Anna Wróblewska opowiedzą o frameworku WildNLP to analizy wrażliwości modeli NLP na celowe ataki lub losowe zakłócenia (więcej o projekcie na tym repo).

W bloku Computer Vision w godzinach 11:40 – 12:10 Anna Wróblewska i studenci z Projektu Zespołowego opowiedzą o fantastycznym projekcie ChaTa – (Charts and Tables), który wspiera automatyczną ekstrakcję i analizę wykresów i tabel w raportach.

Na Main Stage w godzinach 14:30 – 15:00 Przemyslaw Biecek (czyli ja 😉 ) będzie opowiadał o wyjaśnialnym uczeniu maszynowym. To super gorący temat w świecie AI/ML. Nie zabraknie oczywiście naszego flagowego projektu DrWhy.AI, ale będzie też sporo ciekawostek ze świata IML/XAI.

W bloku Future of Data Science: Healthcare w godzinach 15:50 – 16:20 Adam Dobrakowski opowie o wynikach z prowadzonego projektu dotyczącego segmentacji wizyt lekarskich. Jak AI może wspierać naszą służbę zdrowia? Przyjdźcie, zobaczcie!

W bloku Customer Analytics w godzinach 14:30 – 15:00 o segmentacji z użyciem NMF będzie opowiadał Marcin Kosiński (nasz alumni, obecnie Gradient).

W przerwie pomiędzy referatami możecie znaleźć nasz DataLab w pokoju 44 w budynku MiNI (tam gdzie będą referaty). Wpadnijcie porozmawiać o wspomnianych wyżej i innych toczących się projektach (XAI, AutoML, AutoEDA, IML, NLP, AI w medycynie i inne). Jeżeli nie wiecie jak do nas zagadać, to zawsze możecie zacząć od ,,Słyszałem, że macie świetną kawę…”. Nie odmówimy!

Btw, szukamy doktoranta do zespołu, więc może akurat…

Kto myśli na rok do przodu sieje zboże (…) a kto myśli na wiele wiele lat do przodu wychowuje młodzież

Dzisiaj rozpoczyna się strajk nauczycieli. Gorąco kibicuję nauczycielom. I jako rodzic dzieci w wieku szkolnym, i jako nauczyciel akademicki, i jako entuzjasta edukacji dzieci i młodzieży. Bardzo dużo zawdzięczam moim nauczycielom, a los zetknął mnie z wieloma pozytywnie zakręconymi pasjonatami.

W czasach gospodarki opartej na wiedzy to edukacja jest sprawą kluczową. A nie ma dobrej edukacji bez pozytywnej selekcji, którą zapewnić mogą dobre warunki pracy. Dobre zarówno jeżeli chodzi o wynagrodzenia jak i stabilne podstawy programowe, możliwości rozwoju i odpowiednie wyposażenie szkół.
Dlatego popieram strajkujących nauczycieli.

Przemysław Biecek

Btw: Poniższy wykres z twittera KPRM ma współczynnik Lie-Factor przekraczający 350%. Jednak warto zwiększyć liczbę godzin matematyki w szkołach.

iBreakDown: faster, prettier and more precise explanations for predictive models (with interactions)

LIME and SHAP are two very popular methods for instance level explanations of machine learning models (XAI).
They work nicely for images and text inputs, but share similar weakness in case of tabular data: explanations are additive while complex models are (sometimes) not. iBreakDown addresses this problem.

iBreakDown is a a successor of the breakDown package. Yesterday it has arrived on CRAN. Key new features are:

– It identifies and shows feature interactions (if there are local interactions in the model).
– It is much faster. For additive explanations the complexity is O(p) instead of O(p^2).
– The plotD3 function creates an interactive D3-based break-down plot (thanks to r2d3).
– iBreakDown has a new design, created by Hanna Dyrcz. We will have a talk about it ,,Machine learning meets design. Design meets machine learning.” at satRdays. Try the new theme theme_drwhy()!.
– It shows explanation level uncertainty – how good are explanations?

A methodology behind this package is described in the iBreakDown: Uncertainty of Model Explanations for Non-additive Predictive Models.

A nice titanic-powered use-case is described in the titanic vignette.

An example of the D3 interactive explainer is here.

Some intuition is introduced in the Visual Exploration, Explanation and Debugging (working version, still in progress).

iBreakDown is a part of the DrWhy.AI family of explainers consistent with the DALEX.

Let us know if you like it. Feel free to create a pull request with new features, add issue with new idea or star the github repository if you like this package.

Mat-korzenie MiNI PW

Dzisiaj będzie o ciekawym projekcie z Technik Wizualizacji Danych.
Ale najpierw historyjka.

Od studiów jestem fanem hackerspaceów. Miejsc w których ludzie razem robią szalone projekty. Więc i przedmioty projektowe na studiach staram się też tak organizować, by kurs był czasem robienia jakiegoś interesującego projektu (przynajmniej dla prowadzącego ;-)).
Gdy na wydziale statystyki UCDavis zobaczyłem takie drzewo genealogiczne pracowników, pomyślałem, WOW, to jest pomysł na kolejny projekt dla studentów z TWD.

O co chodzi z tą genealogią?
Mathematics Genealogy Project to projekt wspierany przez American Mathematical Society. Otwarta baza danych linkująca matematyków i promotorów ich pracy doktorskiej. Podobny pomysł co baza współautorów publikacji czy współautorów pakietów oprogramowania czy połączenia znajomych na facebooku, tyle że w wersji mat.

W ramach ostatniego projektu z TWD studenci szukali sposobu na przedstawienie związki lwowskiej i warszawskiej szkoły matematycznej z pracownikami wydziału MiNI PW.

Poniżej dwie wizualizacje, które najbardziej przypadły mi do gustu.

Wersja interaktywna tutaj (uwaga, zabawa z grafami uzależnia).

Pełna wersja tutaj.

A jak wyglądałoby drzewo Twojego wydziału?
😉

DWUMiAN – przyjdź, posłuchaj, opowiedz!


Niewiele jest imprez tak bliskich mojemu sercu jak studencka konferencja DWUMiAN.

Konferencja organizowana przez dwa największe wydziały matematyczno-informatyczne w Warszawie (MiNI PW i MIM UW).

Pierwsza edycja miała miejsce na wydziale MiNI PW, a wykład otwierający miał dziekan MIM UW, prof. Paweł Strzelecki.
W tym roku konferencja ma miejsce na wydziale MIM UW, a wykład otwierający ma dziekan MiNI PW, prof. Wojciech Domitrz.

W programie wiele ciekawych referatów, też o analizie danych (lista zaproszonych gości).

Najważniejsze: do 10 marca można się jeszcze rejestrować. Można też zgłaszać propozycje prezentacji i plakatów! Zawsze warto opowiedzieć o zrealizowanych ciekawych projektach braci studenckiej (ciekawe staże wakacyjne, prace dyplomowe, projekty uczelniane i poza uczelniane są mile widziane).

Oby było więcej takich inicjatyw. Inicjatyw, które łączą i budują pomosty.
Wśród organizatorów są oczywiście osoby z MI2DataLab (wiwat Alicja!), a SmarterPoland jest organizacją wspierającą.

Zarejestruj się tutaj!

Do którego aktora jesteś najbardziej podobny? Czyli z pamiętnika nauczyciela akademickiego, Warsztaty Badawcze 1/3

Najbardziej lubię prowadzić przedmioty, które kończą się działającym projektem. Jednym z takich przedmiotów są Warsztaty Badawcze, które prowadzę na MiNI PW. Formuła przedmiotu pozostawia dużą swobodę. W tym semestrze większość projektów polegała na analizie obrazu z kamery, wykorzystaniu głębokich sieci do rozpoznania i analizy twarzy. Kiedyś napiszę o tym przedmiocie więcej, ale dzisiaj zacznę od pokazania kilku ciekawych rozwiązań.

Projekty studentów dostępne są jako strony internetowe. Można samemu się nimi pobawić. Poniżej trzy przykładowe.

Do jakiego aktora/aktorki jestem najbardziej podobny?

Pod adresem https://hollywoodgallery.mini.pw.edu.pl/ znaleźć można aplikację, która na bazie zdjęcia twarzy szuka najbardziej podobnego aktora/aktorki.

Na ile lat wyglądam?

Inna sieć uczyła się rozpoznawać wiek na podstawie zdjęcia twarzy. Dostępna jest pod adresem https://agerecognition.mini.pw.edu.pl. Mnie zazwyczaj odmładza 😉

Najbardziej podobny poseł/posłanka

Pod adresem http://similarmp.mini.pw.edu.pl dostępna jest aplikacja rozpoznająca twarz i szukająca najbardziej podobnego posła/posłanki spośród posłów obecnej kadencji. Nie ma gwarancji, że będzie to poseł/posłanka którą lubimy, ale można zaryzykować. Najlepiej aplikację otwierać przez Firefox. Chrome nie zezwala na dostęp do kamery aplikacjom po http.

Więcej informacji o tych i innych projektach, ich architekturze i analizie opracowanego rozwiązania, znaleźć można na stronie przedmiotu https://github.com/pbiecek/CaseStudies2019W/. Szczególnie projektów związanych z szukaniem najbardziej podobnych osób jest więcej, choć nie wszystkie są dostępne w sieci poza wydziałem MiNI.

Na ścianie naszego Data Labu (Koszykowa 75 Wa-wa) umieszczony jest monitor z kamerką. Czasem wyświetlona jest któraś z powyższych aplikacji. Można podejść i się pobawić.
Kto wie do jakiego aktora okażemy się podobni?

Wykresy unplugged – ćwicz rysowanie wykresów

Wykresy Unplugged to nasza nowa pozycja poświęcona wizualizacji danych. Pisałem o niej przed świętami (więcej informacji tutaj), ale pierwszy druk miał mały nakład i rozszedł się błyskawicznie.
Nic straconego!
Od kilku dni w księgarniach jest już dodruk. Poniżej krótki opis co znajdziecie w środku tej pozycji oraz gdzie można ją kupić.

W Esejach o wizualizacji danych znaleźć można sporo teorii ale niewiele ćwiczeń. Wykresy unplugged to głównie ćwiczenia (28 stron, A4, pełny kolor). Zeszyt wyposażony jest w 8 kompletów danych i ćwiczeń do samodzielnego wyrysowania. Wyrysowania ołówkiem i kredkami, nie ma co ograniczać się do możliwości nawet najlepszego programu graficznego. Obok ćwiczeń jest też kilka wkładek tematycznych o technikach wizualizacji. To zeszyt ćwiczeń dla każdej kreatywnej osoby, nawet zabieganego dyrektora działu Data Science.

Prace nad wykresami zaczęliśmy w okolicach UseR 2017 (jak widać opracowanie takiej pozycji trwa mniej więcej tyle co ciąża słonia). Książka powstała dzięki współpracy z Ewą Baranowską (entuzjastka D3 i grafiki interaktywnej), Piotrem Sobczykiem (autor między innymi Szychta w danych) oraz studiem graficznym storyvisio.

Wykresy unplugged można kupić w Wydawnictwach Uniwersytetu Warszawskiego, w Księgarni PWN lub znaleźć najtańszego dostawcę na ceneo.

Frajdy z rysowania wykresów!

Który z nich zostanie najgorszym wykresem 2018?

Zbliża się Sylwester, czas więc wybrać najgorszy wykres roku 2018! Plebiscyt przeprowadzamy co roku od 2012 (edycja 2017,edycja 2016, edycja 2015, edycja 2014, edycja 2013, edycja 2012). Z roku na rok dostaję coraz ciekawsze zgłoszenia. Z tegorocznych zgłoszeń (oj, było ich bardzo dużo!) wybrałem 11 niezwykłych propozycji. Dziękuję wszystkim za podsyłanie nominacji.

Zasada plebiscytu jest prosta. Do końca roku można wskazywać swoje typy na najgorszy wykres, głosując za pomocą ankiety umieszczonej na końcu tego wpisu. W jednym dniu można głosować tylko raz. Jednocześnie można wskazać do 5 kandydatów. Po nowym roku zobaczymy, który wykres otrzymał najwięcej głosów. To on otrzyma tytuł „Zniekształcenie roku 2018”. Aby ułatwić głosowanie, każdy kandydat ma skrótową wpadającą w ucho nazwę.

Który wykres okaże się najgorszym wykresem 2018 roku? Wybierzcie sami.

1. Odra w Polsce

Poniższy wykres pochodzi z artykułu TVN24 Mniej szczepień, odra atakuje. Cytując fragment z tego artykułu ,,Jeszcze w 2010 roku zachorowań na odrę było w Polsce kilkanaście, w 2012 roku ponad 70, w zeszłym roku już 133 (http://www.tvn24.pl)”

Niby wszystko ok, wiadomo też, że warto się szczepić, wiec artykuł zgodny ze zdrowym rozsądkiem. Ale gdy przedstawić dane z ostatnich 14 lat prezentowane przez Rządowe Centrum Bezpieczeństwa to słupki powinny wyglądać tak.

Na czerwono zaznaczono dane przedstawione na wykresie TVN24. Problem z wykresem polega na wyborze danych psujących do historii, a nie zaprezentowanie kompletu danych.
Artykuł jest z 2017* roku, więc autor nie wiedział, że w 2017 całkowita liczba zachorowań będzie niższa. Ale dane z 2008, 2009 i 2015 już były dostępne, tyle że nie pasowały do trendu (*wykres trafił do mnie dopiero w tym roku, więc trafił do tegorocznego głosowania).
Problem z wykresem: wybiórcze prezentowanie danych.

2. Coraz lepiej

Poniższy wykres pochodzi z serwisu Budżet Wrocławia 2018. Cytując fragment wprowadzenia ,,Bez skomplikowanych tabel i wykresów prezentujemy wydatki miasta ”. Bardzo słuszny pomysł. Ale wykonanie? To akurat pierwszy wykres z tej strony www:

Lie factor 1.5.
(co to jest Lie-factor? tutaj definicja w języku angielskim a tu opis po polsku).
Paski na wykresie sugerują wzrost o 66% (stosunek 1:1.66) a w rzeczywistości patrząc na liczby wyniósł on 7.5% (stosunek 1:1.075). Pomijam fakt, że wzrost na 2017 był inny niż rok później, czego na wykresie nie widać. Pomijam fakt, że dochody są mniejsze od wydatków, co już się tak w oczy nie rzuca.
Problem z wykresem: paski, które nie są proporcjonalne do prezentowanych liczb. Sugerują większy wzrost dochodów niż w rzeczywistości.

3. Ratunku

Poniższy wykres pochodzi z raportu Pielęgniarki Cyfrowe. Można z niego odczytać, że najniższe zarobki są niższe niż najwyższe. Ale jakie to są kwoty odczytać trudno. Czy ten efekt pseudo 3D był potrzebny?

Problem z wykresem: pseudo-3D utrudnia odczytanie wartości, które odpowiadają prezentowanym słupkom.

Bonus to drugi wykres z tego raportu. Autor prawdopodobnie pomylił znaki nierówności w legendzie. Gdy się wczytać w opis tego wykresu to okazuje się, że ten 1% to jedna pielęgniarka z 400. Trudno odgadnąć też skąd ten szary kwadrat. Za los pielęgniarek trzymam kciuki, ale powinny znaleźć kogoś wymiaru Florence Nightingale do przygotowania wykresów do raportu.

4. Skala

Na Twitterze użytkownika pisorgpl w sierpniu można było znaleźć wykres pokazujący wzrost dochodów z VAT.

Brak osi OY sugerował, że coś może być z nią nie tak. Problem z zaczepianiem słupków w 0 zauważyła między innymi gazeta.pl i opisała w tym artykule.

Wykres pokazujący problem z portalu gazeta.pl

Proporcja najwyższego i najniższego słupka na wykresie to 239px/52px czyli ~4.6. Proporcje liczb to 167/99.
Lie factor ~2.75.

Problem z wykresem: słupki, które nie są zaczepione w 0.

5. Kto wyleczy ten wykres?

Jeżeli jesteśmy już w tematach Twittera, to na Twitterze NFZ można było znaleźć taką grafikę.

Na wykresie przedstawiono planowane wydatki. Wzrost wydatków o 7.7% przedstawiono za pomocą pięciokrotnie wyższego słupka.
Lie factor 4.

Problem z wykresem: słupki, które nie są zaczepione w 0.

6. Pochyl się nad absencją

Na stronie Rynku Pracy znaleźć można taki wykres.

Nie zawsze problem z słupkami polega na tym, że nie zaczynają się w 0. Czasem po prostu trudno odczytać gdzie się kończą. Konia z rzędem, kto odczyta czy absencja w usługach jest wyższa niż w produkcji.

Problem z wykresem: (zbędna) perspektywa i obroty utrudniają odczytanie wartości z wykresu.

7. Polska A, B, C, D, E, F i G

Na portalu Do Rzeczy opublikowano taki sondaż (który trafił do mnie przez Twittera).
Bardzo kreatywne podejście do przedstawiania wyników sondażu.

Problem z wykresem: prezentacja danych utrudnia odczytanie wartości z wykresu.

8. 20%

Było coś z mediów rządowych, to teraz coś od opozycji. Również dostałem namiary na ten wykres przez Twittera, więc przesyłam razem z całym twitem.
To 20% dla PO wygląda bardzo dumnie w zestawieniu z sąsiadującym 37%. Stosunek liczb 20/37 ~ 54/100, stosunek wysokości słupków 370px/458px ~ 81/100.
Lie factor ~1.5.

Kwiatków jest więcej. 17% dla ,nie wiem’ wygląda jak 7% dla partii Kukiza. Za to 6% dla Nowoczesnej jest bardzo daleko od tych 7% dla Kukiza.
Problem z wykresem: słupki nieproporcjonalne do prezentowanych wartości.

9. Od morza po góry

Często narzekam na wykresy z perspektywą, a to że utrudniają odczytanie wartości, a to że perspektywa to zbędny ozdobnik.
Ale tak pochylonego wykresu to jeszcze nie widziałem.

Problem z wykresem: zbędne pochylenie wykresu utrudnia odczytywanie danych z wykresu. Legenda po prawej stronie jest całkowicie zbędna.

10. Wykres zagadka

Ponownie wykres z Twittera. Obok słupków znajduje się informacja o 6% PKB na zdrowie w 2024 r. Ale wykres sugeruje, że w 2024 to już będzie prawie 8% (o ile na osi są %, przydałby się jakiś opis).

Problem z wykresem: opis nie pasuje do wykresu.

11. Kolorowo

Zejdźmy już może z polityki. Coś lżejszego na koniec. Wykres z profilu mojego pracodawcy – statystyki rekrutacji na UW. Zdobył moje serce podwójną legendą dla kolorów (Białystok i ekonomia dzielą się czerwonym, Radom i sinologia żółtym itp) i wykresem kołowym który nie przedstawia udziałów (studiów stacjonarnych na UW jest więcej niż te 6 wymienione w plasterkach kółka, poza tym z udziałami bardziej już kojarzy się liczba miejsc na kandydata niż kandydatów na miejsce). To nie jest tak, że dowolne kilka liczb można rzucić na wykres kołowy!


Problem z wykresem: szerokość białego wycinka koła sugeruje, że coś jest około 1/6 całości. Ale ta intuicja nie ma związku z prezentowanymi wartościami.


Ja swoich dwóch faworytów już mam. Zwycięski wykres trafi do Eseju Info-pomyłka. Jeżeli uda mi się zidentyfikować autora wykresu, to wyślę mu też jeden egzemplarz Esejów na pamiątkę. Ogłoszenie wyników plebiscytu po nowym roku.

Dziękuję wszystkim osobom, które przesłały mi swoje propozycje, nawet jeżeli nie znalazły się w powyższym zestawieniu. Ale sami widzicie, że konkurencja jest duża.

To kto powinien wygrać?

Który wykres zasługuje na tytuł ,,Zniekształcenie roku 2018''?

View Results

Loading ... Loading ...

Z pamiętnika nauczyciela akademickiego: O pracach domowych

Najbardziej lubię prace domowe, które mogę czytać z zapartym tchem.
Jak to?
Ekscytować się pracami domowymi ponad 50 studentów robiących to samo zadanie?

Zobaczcie sami!

Na zajęciach z Technik Wizualizacji Danych (zajęcia na bazie Esejów o sztuce prezentowania danych) opowiadam studentom jakie wykresy są dobre a jakie złe.
Ale przecież studenci matematyki i informatyki nie biorą niczego na wiarę!
W ramach piątej pracy domowej sprawdzali czy faktycznie wygląd wykresu ma znaczenie.
Poniżej wyniki z kilku przykładowych prac domowych.
Prace polegały na przeprowadzeniu ankiety na temat związany z wykresami.
Zachęcam do zrobienia najpierw ankiety a później przeczytania o wynikach z ankiety.

Torty czy słupki?

Ankieta
Wyniki

Co oni robią na kolosie?

Ankieta
Wyniki

Albo słupki albo tytuł

Ankieta
Wyniki

Tego Nie Zobaczysz

Ankieta
Wyniki

Libre Office nie jest bez wad

Ankieta
Wyniki

Loteria

Ankieta
Wyniki

A może drzewo?

Ankieta
Wyniki

Nawet dziecko to zobaczy

Wyniki

Co jest w pudełku?

Wyniki

Świetne, prawda?

Dlaczego boimy się sztucznej inteligencji, dlaczego to przerażające i co możemy z tym zrobić?

W ostatnich miesiącach brałem udział w kilku panelach poświęconych SI, między innymi w Dysputach Pitagorejskich na PW. Przyznam, że przebieg dyskusji był często dla mnie zaskakujący, a może nawet przerażający. Dlaczego? O tym poniżej.

Mówi się sporo o gospodarce opartej o dane, rewolucji informacyjnej, przemyśle 4.0 itp. Spodziewałem się więc, że panele poświęcone Sztucznej Inteligencji będą krążyły wokół tego tematu. Co zrobić, by nasza gospodarka wykorzystała tę zmianę zyskując na konkurencyjności? Jak wykorzystać nowe technologie w jak największej części gospodarki? Jednak z jakiegoś powodu, dyskusja z publicznością zbiega na wątki typu ,,czy roboty zabiorą nam pracę’’ lub ,,czy sztuczna inteligencja się zbuntuje’’. Miała być nadzieja na lepsze jutro, a jest głównie strach i obawy.

Cóż, pewnie po prostu lubimy się bać, tym bardziej, że ten strach podsycają niektóre media czy filmy. Baliśmy się kosmitów, baliśmy się zmutowanych pomidorów, możemy się bać i SI. Obecny stan SI jest tak daleki od jakiejkolwiek samoświadomości, że strach przed SI jest równie irracjonalny jak strach przed tym, że lokomotywy parowe przerażą krowy tak, że przestaną dawać mleko a kury jajka (takich rzeczy obawiano się kiedyś).

Niestety strach przed SI, jest barierą rozwoju dla polskich firm, obawą przed wdrażaniem rozwiązań opartych o uczenie maszynowe. Mamy w Polsce sporo osób tworzących rozwiązania w obszarze uczenia maszynowego czy sztucznej inteligencji, ale zazwyczaj jest to outsourcing dla zachodnich firm, bardziej zaawansowanych technologicznie. Firmy szukające klientów na rodzimym rynku często borykają się z bardzo niskim zrozumieniem możliwości, ograniczeń i potencjału jaki daje uczenie maszynowe.

Sprawa jest poważna. Trafiłem ostatnio na raport ,,SZANSE I WYZWANIA POLSKIEGO PRZEMYSŁU 4.0” opracowany przez ARP, który pokazuje jak mizernie wygląda zaawansowanie robotyzacji i automatyzacji w Polsce. Dwa przykładowe wykresy z tego raportu poniżej.

Stwierdzenie z raportu: ,,Obok niskich kosztów pracy, to brak wiedzy i gotowości polskiej kadry kierowniczej do zmian jest główną barierą w rozwoju Przemysłu 4.0 w Polsce’’. Dodałbym jeszcze do tego zdania ukryty strach przed SI, które z jakiegoś powodu kojarzone jest częściej z robotami wyglądającymi jak człowiek zamiast z rozwiązaniami typu system rekomendacyjny Amazona czy wyszukiwarka Googla.

Co możemy zrobić by nie przegapić kolejnej rewolucji? Potrzebna jest szeroko zakrojona edukacja przedsiębiorców/społeczeństwa dot możliwości jakie daje analiza danych. Nie tylko edukacja kadr (programy studiów, też doktoranckich, to zwiększy podaż umiejętności) ale również edukacja przedsiębiorców (aby zwiększyć podaż). Zamiast straszyć w gazetach robotami, można pokazać mniejsze i większe sukcesy AI (i nie chodzi mi o granie w Go).

Microsoft w tym roku zorganizował ciekawe warsztaty/burzę mózgów na ten temat. Grupa z którą miałem przyjemność pracować zaproponowała opracowanie programu edukacyjnego/popularyzacyjnego pod hasłem ,,Zrozum syntetyczny rozum’’. Program (może prelekcje, może youtube, może artykuły w mediach lub TV), w ramach którego można by skupić się na popularyzacji użytecznych zastosowań SI i ML w gospodarce. Zarówno przez pokazywanie gdzie ML podniósł konkurencyjność firmy jak i przez zwalczanie absurdów w stylu samoświadome komputery walczące z ludzkością.

Łatwiej opracować takie materiały mając szerszą perspektywę wielu par oczu.
Jeżeli byłbyś zainteresowany/zainteresowana pomocą w opracowaniu takich materiałów (czy to przez wkład merytoryczny, techniczny czy jakikolwiek inny) to zobowiązany będę za kontakt. Jeżeli się zbierze kilka osób to z pewnością też znajdzie się sposób na realizacje tej inicjatywy.

PS: Ciekawy artykuł o trendach w postrzeganiu SI.

PS2: Z rozwojem SI są oczywiście związane różne zagrożenia (patrz moja ulubiona XAI), ale nie powinny być one stosowane jako wymówka do nie używania SI.