Czym się różnią ceny mieszkań na Żoliborzu od cen mieszkań na Bemowie

Dzisiejszy wpis to przygotowanie gruntu do jutrzejszego, w ktorym rozliczymy sie ze zmianami cen mieszkan. Od jakiegos czasu na różnych stronach można znaleźć artykuły o nazwach ”realne ceny mieszkań spadły o X %’’ (dobrze że realne, co to by byly gdyby spadaly ceny nierealne). Celem tego i kolejnego wpisu jest pokazanie że zmianę ceny można liczyć na wiele różnych sposobów otrzymując wiele różnych wyników. Więc podanie zmiany nie mówiąc dokładnie jak była ona liczona to zwykłą propaganda.

Będziemy korzystać ze zbioru danych mieszkaniaKWW2011, przeanalizujemy tylko ceny z miasta Warszawa dla mieszkan o powierzchni do 300m2. Na początek przyjrzymy się dwóm dzielnicom. Jednej w której mieszkam (Bemowo) i jednej w której ceny się ciekawie zachowują (Żoliborz).

Przedstawimy zmianę trendu ceny mieszkań w czasie w rozbiciu na trzy grupy wielkości mieszkań. Kwantyle rzędu 1/3 i 2/3 z rozkładu wielkości mieszkań wynoszą 49m2 i 68m2, wiec będziemy analizować cenę m2 w grupie mieszkań w trzech grupach: do 49m2, w grupie mieszkań dużych o powierzchni powyżej 68m2 i w grupie pozostałych – średnich co do wielkości mieszkań.

Na poniższym wykresie każdy punkt to jedna oferta sprzedaży. Linia zielona, różowa i niebieska oznaczają lokalne wygładzenie wielomianowe dla ceny m2 dla różnych grup wielkości mieszkań, a czarna linia przerywana to globalny trend w cenach mieszkań bez uwzględnienia struktury mieszkań. Struktura jest istotna ponieważ hipotetycznie, jeżeli mieszkania duże maja niższa cene za m2, i przed czterema laty mieszkań dużych bylo sprzedawanych mniej niż teraz to zaobserwujemy zmiane w średniej cenie nie ze względu na rzeczywistą zmianę ceny ale ze wzgledu na zmianę struktury sprzedawanych mieszkań. Podobnie z analizą cen w Warszawie. Jeżeli w tym roku sprzedaje sie więcej mieszkań na obrzeżach Warszawy niż przed czterema laty (z roku na rok buduje się średnio coraz dalej bo tam jeszcze jest miejsce) to zmiana średniej ceny będzie zwiazana z tym ze w koszyku jest coraz więcej mieszkań dalekich od centrum a wiec tańszych.

No dobrze, to tyle tytułem teorii a teraz obrazki dla dwoch obiecanych dzielnic.

 

Dla Żoliborza jak widzimy ceny m2 dla mieszkań dużych sa wyzsze niz dla malych, moze byc to zwiazane ze duze mieszkania to juz apartamenty dlatego cenę ich m2 ciezko porównywać z cena m2 mieszkania o standardowym wykonczeniu. Pdobnie beda zachowywaly sie mieszkania w Śródmieściu. Te apartamenty tez najbardziej straciły na wartości. Na Bemowie jest inaczej. Nie buduje sie raczej apartamentow w dzielnicy sypialni wiec tutaj to male mieszkania maja wyższą cenę za m2. W obu przypadkach ceny maja tendencje do spadania ale w kazdej kategorii tempo spadku jest inne.

 

Poniżej prezentujemy wykresy dla wszystkich dzielnic Warszawy.

Zmiany zamożności Polaków na kolorowo

Trzy dni temu pisaliśmy o tym jak zmienia się zamożność gospodarstw badanych w ramach Diagnozy Społecznej (ponad 20 tys gospodarstw).
Generalny wniosek jest taki, że coraz więcej gospodarstw domowych poprawiło swój standard przez ostatnie 6 lat (porównywaliśmy wyniki z lat 2005 i 2011). Zobaczmy jak ta sytuacja wygląda w rożnych województwach.
Na poniższych wykresach wykonamy analizę gradacyjną, kolorami zaznaczając wyniki różnych województw.


Aby było czytelniej wybraliśmy pięć województw, dla których wyniki były ciekawe. Są to województwa Zachodni-pomorskie, Mazowieckie, Dolnośląskie, Lubuskie i Świętokrzyskie. Etykiety zamiast przy punktach zostały umieszczone w prawej dolnej legendzie. Jak czytać te wykresy? Ponieważ odpowiedzi są w skali uporządkowanej możemy interpretować bezpośrednio położenie k-tego punktu,  anie tylko ścieżkę do niego prowadzącą (jak na poprzednich przykładach).
Etykieta 5 oznacza, że wystarcza tylko na najtańsze jedzenie, ubranie, opłaty, kredyt. Ponieważ na wykresie współrzędne punktów to skumulowane częstości dla danego i niższych poziomów, więc współrzędne punktów z etykietą 5 oznaczają frakcję osób, którym starcza tylko na najtańsze jedzenie, kredyt, ubrania lub i na to nie. W województwie zachodnio-pomorskim w roku 2005 takich osób było około 40% (współrzędna OX brązowej 5), ale w roku 2011 było już takich osób niewiele ponad 20%. Praktycznie w każdym z narysowanych województw współrzędna OY dla cyfry 7 to 80%, co oznacza, że w roku 2011 80% gospodarstw w tych województwach deklarowało, że muszą żyć oszczędnie, bardzo oszczędnie a czasem i to nie wystarcza. W roku 2005 procent takich deklaracji był wyższy w każdym z województw, najwięcej spadł w Świętokrzyskim z około 90%.

Im dalej punkt od przekątnej tym większa zmiana do tego poziomu. Przykładowo różowa 6 ilustruje, że w województwie Lubuskim osób które żyją bardzo oszczędnie a i to czasem nie starcza było ponad 60% w roku 2005 a w 6 lat później było ich już tylko około 40%.

Mniejsze zmiany dotknęły województw Mazowieckiego i Dolnośląskiego.

Na zakończenie wykres dla wszystkich województw, dosyć gęsty, 16 krzywych zachodzi na sobie co utrudnia odcyfrowywanie wyników. W każdym województwie krzywa jest w większości pod przekątną co znaczy, że jest raczej lepiej niż przed 6 laty.

 

Mapa wartości samochodów

Wczoraj graficznie przedstawialiśmy jak wygląda rozkład cen w zależności od roku produkcji. Co ciekawe w skali logliniowej zależność pomiędzy ceną a rokiem produkcji jest bardzo bliska liniowej dla wielu marek. Zakładając zależność liniową możemy wyznaczyć dwie liczby dla każdej marki. Średnią procentową zmianę ceny w ciągu roku i orientacyjną średnią cenę auta wyprodukowanego w roku 2006. Rok 2006 został wybrany by móc porównywać ceny różnych marek ze sobą, oczekiwaną cenę w roku 2006 wyznaczmy bez względu na to czy dany samochód był produkowany w tym roku czy nie (wykorzystamy liniową zależność aby oszacować średnią cenę w roku 2006).
Na poniższej mapie zaznaczono każdą markę w układzie dwóch współrzędnych, utraty wartości w ciągu roku oraz orientacyjnej ceny w roku 2006. Należy zaznaczyć, że wartość procentowa na osi OX to różnica pomiędzy średnimi cenami dwóch kolejnych roczników, a nie różnica pomiędzy ceną danego rocznika w dwóch kolejnych latach. Tą drugą wartość będzie można ustalić za rok.

 

Dodatkowo na tej mapie wielkością punktu zaznaczono jak wiele aut było wykorzystanych do oszacowania obu wskaźników (cztery wielkości do 100, od 100 do 200, od 200 do 500, powyżej 500) oraz z jakiego kraju pochodzi dana marka. Jeżeli chodzi o pochodzenie to z uwagi na przejęcia oraz przenoszenie produkcji do innych krajów należy tę informację traktować z dystansem.

To co ciekawego widać na tej mapie to że są auta tanie, które nie tracą wiele z czasem na wartości (np Fiat Uno), drogie, które też dużo na wartości tracą (Porche Cayenne), tanie które dużo tracą (Dacia Logan), drogie które mało tracą (Volkswagen Bora) i całe spektrum innych możliwości.

Aby łatwiej ten wykres się analizowało możemy dokonać zbliżenia

Volkswagen Passat traci średni 16% na rok i kosztuje z roku 2006 około 40tys. W otoczeniu znaleźć można np Toyote Corolle Verso. Na prawo znajdziemy Forda S-Maxa o podobnej cenie ale za to znacznie większej utracie na wartości.

Zobaczmy co się stanie jeżeli zagregujemy modele z tej samej marki.

 

Otrzymujemy mapę marek, im bardziej na lewo tej mapy tym mniejsza utrata na wartości im niżej tym tańsze auta.

 

 

 

 

 

 

 

 

Zakup kontrolowany, czyli wybieramy auto dla rodziny

Od prawie czterech lat szukam rodzinnego auta. Ostatnio rozmawiałem ze znajomym, który był zdziwiony dlaczego to taki trudny wybór. Jak to stwierdził wystarczy wprowadzić dane do komputera, określić funkcje celu i wybrać najlepszą opcję. Hmmm, może i tak.

Mamy już dane zebrane  z serwisu otomoto.pl, więc spróbujmy zobaczyć jak wyglądają rozkłady cen w czasie różnych marek. Informacje o zmianach cen znaleźć można na wielu serwisach, np. autocentrum.pl, ale tutaj przedstawimy te zmiany lepiej i czytelniej. Tak jest, konkurujemy z eutotax.

Aktualnie wysoko na liście rozważanych marek stoi Passat. Poniższe wykresy będą wykonane dla prawie każdej marki obecnej w zbiorze danych cenyAut2011. Ale dla ustalenia uwagi zobaczmy  wygląda cena Passata i jak ta cena zależy od roku produkcji (oś OX), pojemności i typu silnika (poszczególne panele) oraz wersji marki (rożne kolory kropek).

Na panelu po prawej stronie podana jest nazwa marki, liczba ofert sprzedaży aut tej marki, oraz informacja o rozkładzie cen dla aut produkowanych w danym roczniku. Każda niebieska kropka to jedna oferta sprzedaży. Czerwona kropka oznacza medianę cen, czerwone kreski oznaczają odpowiednio kwantyle 5-25% i 75-95%. Ceny są w skali logarytmicznej. Na wykresie mamy tylko dane o autach używanych, w tej kategorii mediany cen układają się prawie idealnie w linii prostej, co odpowiada stałej procentowej zmianie w cenie. Tę informację jeszcze wykorzystamy.

Z wykresów widzimy, że passaty  w dieslu z silnikiem 1900cm3 są dosyć popularne. 5 lat to jeszcze wersja B6. Zobaczmy teraz jak wyglądają podobne wykresy dla konkurencji.

 

Obrazki dla innych marek można znaleźć w katalogu tutaj.

Lub korzystając z poniższej listy marek, dla której zebrano takie wykresy.
Alfa Romeo 147, Alfa Romeo 156, Alfa Romeo 159, Alfa Romeo 166, Alfa Romeo GT,
Audi A2, Audi A3, Audi A4, Audi A5, Audi A6, Audi A6 Allroad, Audi A7, Audi A8, Audi Q5, Audi Q7, Audi TT,
BMW 118, BMW 316, BMW 318, BMW 320, BMW 325, BMW 330, BMW 520, BMW 525, BMW 530, BMW 535, BMW 730, BMW 740, BMW X3, BMW X5, BMW X6,
Chevrolet Aveo, Chevrolet Lacetti,
Chrysler 300C, Chrysler Grand Voyager, Chrysler Pacifica, Chrysler PT Cruiser, Chrysler Sebring, Chrysler Town & Country, Chrysler Voyager,
Citroen Berlingo, Citroen C1, Citroen C2, Citroen C3, Citroen C4, Citroen C4 Picasso, Citroen C5, Citroen C8, Citroen Saxo, Citroen Xsara, Citroen Xsara Picasso,
Dacia Logan,
Daewoo Lanos, Daewoo Matiz, Daewoo Nubira,
Dodge Grand Caravan, Dodge RAM,
Fiat 500, Fiat Brava, Fiat Bravo, Fiat Croma, Fiat Doblo, Fiat Ducato, Fiat Grande Punto, Fiat Marea, Fiat Multipla, Fiat Palio, Fiat Panda, Fiat Punto, Fiat Seicento, Fiat Stilo, Fiat Uno,
Ford C-MAX, Ford Fiesta, Ford Focus, Ford Focus C-Max, Ford Fusion, Ford Galaxy, Ford KA, Ford Mondeo, Ford Mustang, Ford S-Max, Ford Transit,
Honda Accord, Honda Civic, Honda CR-V, Honda Jazz,
Hyundai Accent, Hyundai Coupe, Hyundai Getz, Hyundai i30, Hyundai Matrix, Hyundai Santa Fe, Hyundai Tucson,
Jaguar S-Type, Jaguar X-Type,
Jeep Cherokee, Jeep Grand Cherokee,
Kia Carens, Kia Carnival, Kia Cee’d, Kia Picanto, Kia Rio, Kia Sorento, Kia Sportage,
Lancia Lybra,
Land Rover Discovery, Land Rover Freelander, Land Rover Range Rover,
Lincoln Town Car,
Mazda 2, Mazda 3, Mazda 323, Mazda 323F, Mazda 5, Mazda 6, Mazda 626, Mazda CX-7, Mazda MPV, Mazda Premacy, Mazda RX-8,
Mercedes-Benz A 140, Mercedes-Benz A 160, Mercedes-Benz A 170, Mercedes-Benz A 180, Mercedes-Benz B 180, Mercedes-Benz C 180, Mercedes-Benz C 200, Mercedes-Benz C 220, Mercedes-Benz CLK 200, Mercedes-Benz E 200, Mercedes-Benz E 220, Mercedes-Benz E 270, Mercedes-Benz E 280, Mercedes-Benz E 320, Mercedes-Benz E 350, Mercedes-Benz ML 270, Mercedes-Benz ML 320, Mercedes-Benz ML 350, Mercedes-Benz S 320, Mercedes-Benz S 350, Mercedes-Benz S 500, Mercedes-Benz SLK 200, Mercedes-Benz Sprinter, Mercedes-Benz Vito,
Mini Cooper,
Mitsubishi Carisma, Mitsubishi Colt, Mitsubishi Eclipse, Mitsubishi Galant, Mitsubishi L200, Mitsubishi Lancer, Mitsubishi Outlander, Mitsubishi Pajero, Mitsubishi Space Star,
Nissan Almera, Nissan Almera Tino, Nissan Micra, Nissan Navara, Nissan Note, Nissan Patrol, Nissan Primera, Nissan Qashqai, Nissan Terrano, Nissan X-Trail,
Opel Agila, Opel Astra, Opel Combo, Opel Corsa, Opel Frontera, Opel Insignia, Opel Meriva, Opel Omega, Opel Signum, Opel Tigra, Opel Vectra, Opel Vivaro, Opel Zafira,
Peugeot 106, Peugeot 107, Peugeot 206, Peugeot 206 CC, Peugeot 207, Peugeot 306, Peugeot 307, Peugeot 308, Peugeot 406, Peugeot 407, Peugeot 607, Peugeot 807,
Peugeot Partner,
Porsche 911, Porsche Cayenne,
Renault Clio, Renault Espace, Renault Grand Espace, Renault Grand Scenic, Renault Kangoo, Renault Laguna, Renault Megane, Renault Modus, Renault Scenic, Renault Thalia, Renault Trafic, Renault Twingo,
Renault Vel Satis,
Rover 25, Rover 45, Rover 75,
Saab 9-3, Saab 9-5,
Seat Alhambra, Seat Altea, Seat Arosa, Seat Cordoba, Seat Ibiza, Seat Leon, Seat Toledo,
Skoda Fabia, Skoda Felicia, Skoda Octavia, Skoda Roomster, Skoda Superb,
Smart Fortwo,
Subaru Forester, Subaru Impreza, Subaru Legacy,
Suzuki Grand Vitara, Suzuki Jimny, Suzuki Swift, Suzuki SX4,
Toyota Auris, Toyota Avensis, Toyota Aygo, Toyota Camry, Toyota Celica, Toyota Corolla, Toyota Corolla Verso, Toyota Land Cruiser, Toyota RAV-4, Toyota Yaris,
Volkswagen Bora, Volkswagen Caddy, Volkswagen Caravelle, Volkswagen Fox, Volkswagen Golf, Volkswagen Golf Plus, Volkswagen Jetta, Volkswagen Lupo, Volkswagen Multivan, Volkswagen New Beetle, Volkswagen Passat, Volkswagen Passat CC, Volkswagen Polo, Volkswagen Sharan, Volkswagen Tiguan, Volkswagen Touareg, Volkswagen Touran, Volkswagen Transporter,
Volvo C30, Volvo S40, Volvo S60, Volvo S80, Volvo V40, Volvo V50, Volvo V70, Volvo XC 70, Volvo XC 90

Zbiór danych o cenach ofertowych aut z 1 października 2011

Kilka dni temu napisałem mały skrypt w perlu, który zbiera dane o ofertach sprzedaży samochodów z serwisu otomoto.pl.

W sumie przez kilka godzin udało się zgromadzić zbiór danych o prawie 200 tys ofertach sprzedaży auta. Katalog z danymi znajduje się tutaj. Link do programu R który wczytuje te dane znajduje się tutaj. Uwaga! plik tekstowy z danymi to 75MB.

Dla każdej oferty zebrane są takie cechy jak: cena, marka, model, wersja, moc, silnik, liczba drzwi,  rodzaj paliwa, deklarowany przebieg, rok produkcji, opis, wyposażenie, kraj pochodzenia, kolor itp.

Myślę, że to bardzo ciekawy zbiór danych. Proste podsumowania przedstawione w pliku wczytującym dane pokazują np. że prawie 1/4 z tych aut pochodzi z Niemiec. Cztery najczęściej oferowane modele to Passat (7tys ofert), Golf (6.3tys ofert), Astra (6tys ofert) i Focus (5.2tys ofert). Ciekawie będzie zobaczyć jak ceny tych aut zmieniają się w zależności od wersji, roku produkcji, przebiegu, wyposażenia. Może nawet uda się zbudować coś konkurencyjnego do eurotaxu.

 

Co się dzieje z cenami mieszkań?

Kilka dni temu pisałem o zmianach w cenach ofertowych cen mieszkań. Również kilka dni temu przeczytałem artykuł na GW o tytule  ”Mieszkań więcej niż kupujących. Ceny mogą jeszcze spaść ” (tutaj link).

Myślę, że każdy po przeczytaniu takiego tytułu ma prawo oczekiwać, że w artykule autor wykaże, że ceny spadają i że spadać będą. W tym kontekście dziwnie wygląda  wykres z tego samego artykułu (wklejony poniżej).

Co prawda miasta zostały ułożone w kolejności od najdroższych do najtańszych, przez co na pierwszy rzut oka nie patrząc an liczby widać wyraźny trend spadkowy, ceny lecą na łeb na szyję. Jednak gdy się przyjrzeć liczbom w trzech miastach ceny wzrosły a w pięciu zmalały. Już nie ma takiej dramatycznej zmiany.

Ok, pomińmy dyskusję czy ta manipulacja percepcją jest celowa czy nie. Zastanówmy się jak inaczej można zaprezentować te same dane. Poniżej dwa wykresy pierwszy nadawałby się do artykułu ,,Ceny mieszkań rosną i ta bańka puchnąć będzie wiecznie”, drugi jest bardziej wyważony.

 

I jeszcze dorzucę kod w programie R, który posłużył do wygenerowania tego obrazka.

 

Ceny metra kwadratowego we Wrocławiu

Kilka dni temu dodałem do repozytorium zbiór danych dotyczących cen ofertowych mieszkań z serwisu oferty.net (patrz: http://smarterpoland.pl/?p=60). Teraz przyszedł czas na przyjrzenie się bliżej tym danym.

Ponieważ większość z przeprowadzonych analiz uwzględniała zrożnicowanie pomiędzy dzielnicami to, aby nie zamazywać wyników efektami 40 różnych dzielnic, pokażę kilka analiz wykonanych wyłącznie dla Wrocławia. Administracyjnie Wrocław ma 5 dzielnic, w danych jest jeszcze szósty poziom ‘inne’ oznaczający brak lub niejednoznaczne przypisanie dzielnicy do oferty sprzedaży mieszkania. Oczywiście wszystkie analizy są generyczne i można je powtórzyć dla innych miast.

Przyjrzę się bliżej efektom wpływającym na cenę metra kwadratowego we Wrocławiu. Mieszkania podzilimy na cztery grupy, tzw. kawalerki (jeden pokój powierzchnia 20-35 m2), dla młodego małżeństwa (dwa pokoje 40-55 m2) i dla rodziny z dziećmi (3-4 pokoje 60-80 m2), inne, wybór całkowicie arbitralny. Zobaczmy jak rozkładają się ceny metra kwadratowego dla różnej wielkości mieszkań w różnych dzielnicach. Aby pracować z bardziej jednorodną grupą bierzemy na razie pod uwagę tylko rok 2011. Szerokość pudełka odpowiada liczbie ofert z danej dzielnicy. Interpretacja tak jak wykresu pudełkowego (boxplot). Zaskoczenia nie ma, im wieksze mieszkanie tym m2 tańszy, ceny w centrum sa wyższe niż poza, Śródmieście i Krzyki jako popularniejsze dzielnice sa tez droższe niż Psie Pole czy Fabryczna (każda z tych dzielnic jest bardzo duża, więc uśrednianie cen po całej dzielnicy to bardzo duże uproszczenie). Kod programu R użyty do wygenerowania tego rysunku znajduje się tutaj [http://tofesi.mimuw.edu.pl/~cogito/smarterpoland/mieszkaniaKWW2011/Wroclaw/rysunki.r]

 

 

Prosty model regresji liniowej pokazuje że na cene m2 wpływa istotnie kilka zmiennych, w tym: dzielnica, powierzchnia, data złożenia oferty. Przyjrzymy się każdej z tych zmiennych, zaczniemy od powierzchni. Najprostszą charakterystyką do przedstawienia będzie średnia cena m2, później przyjrzymy się innym charakterystykom. Zobaczmy jak średnia cena m2 rozkłada się dla mieszkań o różnej powierzchni w rozbiciu na dzielnice. Kod programu R użyty do wygenerowania tego rysunku znajduje się tutaj [http://tofesi.mimuw.edu.pl/~cogito/smarterpoland/mieszkaniaKWW2011/Wroclaw/rysunki.r]


Ograniczyliśmy się do przedziały powierzchni 20-100 m2, mieszkań spoza tego przedziału jest dosyć mało, więc wyniki byłyby mało wiarygodne. Obrazki mówią same za siebie, zatem darujemy sobie interpretacje powyższego wykresu. Kolejnym efektem, który będzie nas interesował, to zmiana ceny mieszkania w czasie. Skoro cena metra kwadratowego zależy od powierzchni to do kolejnej analizy zostały one skorygowane, tzn. zastąpione ceną metra kwadratowego odpowiadającą powierzchni 50m2.


Gorąca dyskusja na różnych forach nt. czy mieszkania drożeją czy tanieją wydaje się być łatwa do rozstrzygnięcia na podstawie powyższego wykresu. Ceny spokojnie i powoli sobie spadały w większości dzielnic do marca tego roku, gdy zaczeły spadać szybciej. Troche to zaskakujące, można jednak sprawdzić że podobny efekt utrzymuje się też w innych miastach. Optymiści (niepoprawni) mogą stwierdzić, że w Śródmieściu ceny rosły. Powyższy wykres dla Warszawy byłby ciekawszy, ponieważ mamy ceny z ostatnich pięciu lat, więc ciekawszy horyzont czasowy. Oczywiście powyższy trend dotyczy mieszkań z naszego zbioru danych, niekoniecznie jest on reprezentatywny, zatem i powyższe wyniki należy czytac krytycznie (jak wszystko). Zobaczmy jeszcze, ile ogłoszeń mamy z różnych okresów czasu.


Czy to nasze źródło danych jest coraz popularniejsze, czy też coraz więcej mieszkań się sprzedaje, trudno te dwa efekty rozwikłać.

Powyżej oglądaliśmy średnią cenę metra kwadratowego. Jasne jest, że rozkład cen jest silnie skośny, zdarzają się pojedyńcze bardzo drogie mieszkania i te pojedyncze obserwacje odstające wpływają silnie na średnią, więc wypadałoby porównać średnią z medianą albo inną bardzej odporną charakterystyką. Wykorzystamy regresję kwantylową i krzywe sklejane kubiczne, aby zamodelować zmienę mediany ceny metra kwadratowego w czasie. Wyniki poniżej, linia ciągła to wspomniana mediana, linia kropkowana odpowiada średniej.


Zgodnie z oczekiwaniami mediany sa poniżej średnich, trendy dla obu charakterystyk sa podobne. Kod programu R użyty do wygenerowania tego rysunku znajduje się tutaj [http://tofesi.mimuw.edu.pl/~cogito/smarterpoland/mieszkaniaKWW2011/Wroclaw/rysunki.r]

Podsumowując, modelowanie cen mieszkań to ciekawy temat, za jakiś czas zajmiemy się cenami w Warszawie i Krakowie.

Wykresy i kody programu R wykorzystane w tym wpisue znajdują się w katalogu http://tofesi.mimuw.edu.pl/~cogito/smarterpoland/mieszkaniaKWW2011/Wroclaw/.

 

Zbiór danych o cenach ofertowych mieszkań z Warszawy, Wrocławia i Krakowa z lat 2006-2011

Ok, zaczynamy od zbioru danych. W pakiecie PBImisc umiesciłem kiedyś zbiór danych o 973 transakcjach dotyczących mieszkań z Warszawy. Mieszkań nie było zbyt dużo a transakcje dotyczyły tylko z Warszawy ale był to miły zbiór danych do ćwiczeń z R czy modelami liniowymi. Po dwóch latach nadszedł czas na aktualizację tego zbioru danych. Nowy zbior danych, który dzisiaj dodałem jest większy, dotyczy 188 884 ofert sprzedaży mieszkań zebranych dla miast Kraków, Warszawa i Wrocław z lat 2006-2011. Dane pochodzą z serwisu ogłoszeniowego http://oferty.net.

W tym miejscu: Wczytaj dane znajduje się skrypt R wczytujący dane bezpośrednio z internetu. Dane w postaci binarnej i tekstowej znajdują się w tym katalogu: Katalog z danymi.

Niebawem dodam kilka wizualizacji ilustrujących jak zmienia się cena mieszkań w czasie.