dime: Deep Interactive Model Explanations

Hubert Baniecki created an awesome package dime for serverless HTML interactive model exploration. The experimental version is at Github, here is the pkgdown website. It is a part of the DrWhy.AI project.

How does it work?

With the DALEX package you can create local and global model explanations for machine learning models. Each explanation can be visualized with a genetic plot() function.
Hubert created a generic plotD3() function which turns each explanation into an interactive D3 plot (with the help of r2d3 package). With the dime package you can combine few interactive explanations into a single dashboard. And the dashboard is serverless, you can host it at github or anywhere.

For example, the gif below shows how to combine a break down plot (local feature attribution) with ceteris paribus profiles (detailed analysis of a single variable). You can click a variable of interest to activate an appropriate ceteris paribus profile (click to play).

With the dime package you can combine any number of interactive widgets into a single dashboard. You can connect local, global explanations or EDA tools like histograms or barplots.

It’s very easy to generate such website. Just create an explainer and call the modelStudio() function.

Find examples and R codes here: https://github.com/ModelOriented/dime/blob/master/README.md

The dime package is still in the experimental phase. Your feedback is welcomed. Feel free to submit an issue with comments or ideas.

Learn about XAI in R with ,,Predictive Models: Explore, Explain, and Debug”

XAI (eXplainable artificial intelligence) is a fast growing and super interesting area.
Working with complex models generates lots of problems with model validation (on test data performance is great but drops at production), model bias, lack of stability and many others. We need more than just local explanations for predictive models.

The more complex are models the better tools are needed to understand how models are working, explore model behaviour and debug potential errors.

Two years ago I’ve initiated work on the DALEX package. Library packed with functions for local and global model exploration.
Over the time the package went through few architectural changes and now it is part of a larger universe of tools for model exploration developed at MI2DataLab with an increasing support of external contributors (join us).

To explain our philosophy behind the model exploration we (together with Tomasz Burzykowski from Hasselt) started a book ,,Predictive Models: Explore, Explain, and Debug’’.

First part, devoted to local exploration, is ready to read. It explains how to use DALEX with iBreakDown and ingredients packages for instance level explanations.
Later we will describe other packages from our universe.

Find the book-down version of here.

Find a one-page-cheatsheet here.

Let us improve these descriptions by adding pull requests or issues at the GitHub repo.
One day there will be a paper version 😉

Rozstrzygnięto konkurs na komiks o matematyce, informatyce i analizie danych!

Miesiąc temu pisałem o konkursie na najlepszy komiks o matematyce, informatyce i analizie danych. W ubiegłym tygodniu rozstrzygnęliśmy pierwszą edycję!
Nie było to proste. Z ponad 25 zgłoszeń trzeba było wybrać najlepsze w dwóch kategoriach: kategorii szkoły średnie i w kategorii otwartej (w której nagrody funduje nasza fundacja). Komisja w składzie: Kamila Łyczek (Delta), Barbara Roszkowska-Lech (MiNI PW), Tomasz Biernacki (znawca komiksu) i niżej podpisany Przemysław Biecek obradowała zaciekle. Głosy były zróżnicowane, ale koniec końców wybraliśmy bardzo ciekawe prace.

Czy jesteście ciekawi jakie prace nagrodzono?

W kategorii otwartej I nagrodę otrzymał komiks Inwersja Małgorzaty Łazęckiej.

Wyróżniliśmy też dwie świetne prace.

Przystające autobusy Piotra Nieżurawskiego.

Oraz Wpływ społeczności na rozwój PYTHONA Marty Czanockiej-Cieciury.

Więcej o konkursie oraz o wynikach w kategorii dla szkół średnich można przeczytać na tej stronie.
Wszystkie prace nadesłane na konkurs będzie można zobaczyć na specjalnej wystawie komiksów w dniu 12 września 2019 r. w Gmachu Wydziału Matematyki i Nauk Informacyjnych Politechniki Warszawskiej w czasie V Dnia Popularyzacji Matematyki. W tym dniu, w czasie uroczystej gali nastąpi wręczenie nagród wyróżnionym.

Możecie już się przygotowywać do kolejnej edycji!

Ile punktów potrzeba by się dostać do szkoły średniej w Warszawie?

W tym artykule Polityki przeczytałem, że ponad 3 tysiące uczniów nie dostało się do żadnej z wybranych szkół średnich w Warszawie. Pomimo wysiłku szkół by przyjąć możliwie wielu uczniów.

Marcin Luckner (MiNI PW) przesłał mi ciekawą analizę progów punktowych w różnych oddziałach w Warszawie. Poniżej umieszczam wybrane wykresy po drobnych zmianach. Dane pochodzą z serwisu edukacja.warszawa.pl. Przy okazji też będziemy mogli porównać kilka sposobów pokazywania rozkładów.

W powyższych danych znajduje się informacja ile punktów było potrzeba aby dostać się do wskazanego oddziału we wskazanej szkole średniej. W rozbiciu na typ szkoły i na to czy rekrutowały się dzieci z podstawówek czy gimnazjów.
Poniższy wykres (histogram) pokazuje jak wyglądają progi punktowe w różnych typach oddziałów. Na wykresie nie ma szkół sportowych, ponieważ tam były dodatkowe punkty sprawnościowe i trudno te progi porównać.

W różnych mediach można znaleźć informację o uczniu, który miał 190 punktów i nie dostał się do żadnej wybranej szkoły. Ale były też szkoły, które miały znacznie niższe progi przyjęcia. Bardzo wiele oddziałów miało progi przyjecia w okolicy 160 punktów.

John Tukey lata temu zaproponował by rozkłady opisywać za pomocą piątki liczb – min, max, mediana i kwartyle. To 5 liczb które dzieli wartości na 4 równe przedziały. Można je pokazać za pomocą wykresów pudełkowych.

Poniżej mamy wykresy pudełkowe z rozkładem progów punktowych podziałem na dzielnice. Im szersze pudełko tym więcej szkół jest w danej grupie. Najwyższe progi były w szkołach w Śródmieściu (ponad połowa oddziałów miała próg przyjęcia powyżej 165 punktów). łatwiej było się dostać do szkół średnich na Pradze czy w Ursusie.

Okazuje się, że i moją i Marcina ulubioną techniką pokazywania rozkładów jest dystrybuanta empiryczna. Wykres poniżej pokazuje jaki procent oddziałów ma prób przyjęcia mniejszy niż x.

Przykładowo szara linia odpowiada progowi 150 punktów. Tyle punktów wystarczyły by dostać się do praktycznie wszystkich oddziałów integracyjnych, ale już tylko do około 60% oddziałów ogólnych (1 na 3 oddziały ogólne ma wyższy prób punktowy), do około 33% oddziałów w szkołach dwujęzycznych (2 na 3 oddziały w szkołach dwujęzycznych ma wyższy próg przyjęcia). Nie wystarczy na szkoły z międzynarodową maturą.

To jaki jest Wasz ulubiony sposób pokazywania rozkładów?

Projektowanie ekstremalne, czyli … z pamiętnika nauczyciela akademickiego


Dzisiaj będzie o pewnym ciekawym eksperymentalnym projekcie prowadzonym pomiędzy PW, UW oraz ASP. Przedmioty projektowe prowadzę od kilkunastu lat, ale ten był wyjątkowy. Poniżej krótko opiszę o co chodziło i jakie z tego zostały mi nauczki na przyszłość. Może komuś się przyda do realizacji podobnych zajęć.

Projekt dotyczył wizualizacji danych, a wizualizacja to bardzo interdyscyplinarny obszar. Pracując w takich miejscach można poznać bardzo ciekawe osoby z korzeniami w innych dziedzinach, od kontrolingu po wzornictwo przemysłowe. Tak się jakoś złożyło, że podczas poprzednich wakacji robiliśmy coś z dr Ewą Modrzejewską (Instytut Polonistyki Stosowanej, Uniwersytet Warszawski), której jedno z hobby to retoryka w wizualizacji danych. Mniej więcej w tym samym czasie pracowaliśmy nad Wykresami Unplugged z dr Magdą Małczyńską-Umeda (Akademia Sztuk Pięknych w Warszawie). Od słowa do słowa wykluł się w naszych głowach pomysł na zrobienie interdyscyplinarnego projektu, w którym na poważnie zderzylibyśmy perspektywę retoryczną, projektową i statystyczną.

Jak się bawić to na całego. A że w grupie raźniej to do zabawy zaprosiliśmy 20 studentów z zajęć, które prowadzimy. Kilku z dziennikarstwa UW, kilku z projektowania ASP i kilku z matematyki i informatyki MiNI PW.
Studentów podzieliliśmy na 4 grupy, w każdej grupie znaleźli się przedstawiciele każdej uczelni. Na warsztat wzięliśmy bardzo ciekawe dane otrzymane od firmy LekSeek. Dane dotyczyły częstości chorób w podziałach na wiek, płeć i inne cechy socjo-demo. Choroba to często dla młodych temat tabu. W projekcie chodziło o to by ten temat odczarować.

Każda z grup musiała znaleźć dla siebie jakiś temat a następnie przygotować analizy danych związane z wybranym tematem, krótki artykuł o wynikach analiz i plakat nawiązujący do analiz.
Wyszło naprawdę super. Poniżej jest jeden z plakatów, które zostały przygotowane. Tak, w tej głowie jest rozkład częstości wizyt lekarskich związanych z depresją w podziale na grupy wiekowe i płeć (autorem jest Dawid Grzelak, ASP). Genialne!

Więcej o samym projekcie, oraz o uzyskanych wynikach można przeczytać w raporcie Dane – Retoryka – Dizajn. W raporcie znaleźć można zarówno kody z analiz, jak i artykuły o wynikach i plakaty nawiązujące do znalezionych wyników.

After all myślę, że było to bardzo ciekawe doświadczenie i dla nas (prowadzących) i dla studentów. Zdecydowanie wychodzi się poza strefę komfortu.
Dla tych co chcieliby podobny projekt zrealizować, kilka doświadczeń:

– Logistyka w umawianiu spotkań dla studentów z 3 uczelni to oczywiście masakra. Nam się udało znaleźć jakieś popołudnia, ale czasem trzeba było w locie szukać innych terminów. Terminy spotkań lepiej zaplanować z wyprzedzeniem, najlepiej jeszcze przed rekrutacją studentów na taki projekt.
– Nasz projekt realizowany był podczas 3 wspólnych +- 2 godzinnych walnych spotkań, pomiędzy nimi był czas na prace w podgrupach. Lepiej byłoby mieć więcej dłuższych spotkań. Dwie godziny to mało aby przesiąknąć pomysłami osób z innych uczelni.
– Studenci z tak różnymi doświadczeniami mają różne sposoby pracy i potrzebują trochę czasu a czasem i pomocy by dograć się z resztą grupy. Jakieś małe zadania team-buildingowe powinny pomóc.
– Zestawienie przy jednym stole inżyniera informatyka, projektanta artystę i dziennikarza śledczego to ciekawa okazja by zobaczyć jak wygląda zupełnie inny warsztat pracy. Czasem jednak trzeba aktywnie zachęcać by poszczególne osoby chciały się tym warsztatem podzielić z nowymi współpracownikami.
– Tak różnorodne grupy to na początku spory chaos, ale z chaosu rodzą się fajne rzeczy.

modelDown is now on CRAN!


The modelDown package turns classification or regression models into HTML static websites.
With one command you can convert one or more models into a website with visual and tabular model summaries. Summaries like model performance, feature importance, single feature response profiles and basic model audits.

The modelDown uses DALEX explainers. So it’s model agnostic (feel free to combine random forest with glm), easy to extend and parameterise.

Here you can browse an example website automatically created for 4 classification models (random forest, gradient boosting, support vector machines, k-nearest neighbours). The R code beyond this example is here.

Fun facts:

archivist hooks are generated for every documented object. So you can easily extract R objects from the HTML website. Try

archivist::aread("MI2DataLab/modelDown_example/docs/repository/574defd6a96ecf7e5a4026699971b1d7")

– session info is automatically recorded. So you can check version of packages available at model development (https://github.com/MI2DataLab/modelDown_example/blob/master/docs/session_info/session_info.txt)

– This package is initially created by Magda Tatarynowicz, Kamil Romaszko, Mateusz Urbański from Warsaw University of Technology as a student project.

MI2 @ Data Science Summit (x5) – już za tydzień


Już za tydzień na wydziale MiNI Politechniki Warszawskiej odbędzie się konferencja Data Science Summit.

Aż trudno uwierzyć, że to dopiero trzecia edycja. Z roku na rok rośnie w zawrotnym tempie ściągając ciekawych prelegentów i uczestników z Polski i zagranicy. Dziś jest to jedna z największych konferencji Data Science w regionie.

Rada programowa DSS miała nie lada zadanie by wybrać z ponad 160 zgłoszeń te, które porwą uczestników konferencji (a ma ich być rekordowo wielu). Zgłoszone tematy są bardzo ciekawe i różnorodne (pełny program). Mnie szczególnie cieszy szeroka reprezentacja współpracowników z MI2 DataLab na tej konferencji.
Znajdziecie nas na tych prezentacjach:

W bloku NLP w godzinach 11:00 – 11:30 Barbara Rychalska i Anna Wróblewska opowiedzą o frameworku WildNLP to analizy wrażliwości modeli NLP na celowe ataki lub losowe zakłócenia (więcej o projekcie na tym repo).

W bloku Computer Vision w godzinach 11:40 – 12:10 Anna Wróblewska i studenci z Projektu Zespołowego opowiedzą o fantastycznym projekcie ChaTa – (Charts and Tables), który wspiera automatyczną ekstrakcję i analizę wykresów i tabel w raportach.

Na Main Stage w godzinach 14:30 – 15:00 Przemyslaw Biecek (czyli ja 😉 ) będzie opowiadał o wyjaśnialnym uczeniu maszynowym. To super gorący temat w świecie AI/ML. Nie zabraknie oczywiście naszego flagowego projektu DrWhy.AI, ale będzie też sporo ciekawostek ze świata IML/XAI.

W bloku Future of Data Science: Healthcare w godzinach 15:50 – 16:20 Adam Dobrakowski opowie o wynikach z prowadzonego projektu dotyczącego segmentacji wizyt lekarskich. Jak AI może wspierać naszą służbę zdrowia? Przyjdźcie, zobaczcie!

W bloku Customer Analytics w godzinach 14:30 – 15:00 o segmentacji z użyciem NMF będzie opowiadał Marcin Kosiński (nasz alumni, obecnie Gradient).

W przerwie pomiędzy referatami możecie znaleźć nasz DataLab w pokoju 44 w budynku MiNI (tam gdzie będą referaty). Wpadnijcie porozmawiać o wspomnianych wyżej i innych toczących się projektach (XAI, AutoML, AutoEDA, IML, NLP, AI w medycynie i inne). Jeżeli nie wiecie jak do nas zagadać, to zawsze możecie zacząć od ,,Słyszałem, że macie świetną kawę…”. Nie odmówimy!

Btw, szukamy doktoranta do zespołu, więc może akurat…

Matematyka w komiksie, komiks w matematyce – jeszcze tylko tydzień na Wasze zgłoszenia!


Do 12 czerwca można zgłaszać pomysłowe komiksy o matematyce, informatyce lub analizie danych na konkurs ,,Matematyka w komiksie, komiks w matematyce”.

Zgłaszać można komiksy o objętości od jednego okienka lub jednego paska do jednej strony A4.
Najlepsze komiksy trafią na okładkę Delty i/lub otrzymają nagrody rzeczowe.

Kręci Cię matematyka?
Masz pomysł jak ją pokazać w komiksie!
Prześlij Twoją propozycję na ten konkurs.

Więcej informacji na stronie konkursu https://dpm.mini.pw.edu.pl/node/710.

xaibot – conversations with predictive models!


If you could talk to a predictive machine learning model, what would you ask for?

Try! Michał Kuźba is developing a mind-blowing project – xai chat-bot. Dialog based system that helps to explore and understand predictive models through natural language conversations (type, speak or phone the model 😉 ).

For example, imagine that you have a random forest model that predicts survival for titanic data. With xai-bot you can chat about your chances of survival, variables that influence survival, options that you have to increase your odds or just chat about life models.


The chatbot is based on dialog-flow google infrastructure. It communicates with DALEX explainers written in R through plumber REST API.

Find the chatbot here: https://kmichael08.github.io.

The project is under development, but the bot is already pretty smart.

So, have fun!

How to design a model visualisation @ Gdansk satRdays


I had amazing weekend in Gdansk thanks to the satRday conference organized by Olgun Aydin, Ania Rybinska and Michal Maj.

Together with Hanna Piotrowska we had a talk ,,Machine learning meets design. Design meets machine learning”. Hanna redesigned DALEX visualisations (DALEX is a set of tools for visual explanation of predictive ML models). During the talk she explained what and why was changed.

See for example the metamorphosis of the Break Down explainer. How many differences can you spot?

Every change (axis, reading order, spacing, colors, descriptions, background, annotations) serves some purpose.

Find our presentation at slideshare.

List of satRday talks (machine learning was quite popular).

Hanna design is implemented in ggplot2 thanks to Tomasz Mikołajczyk and in D3 thanks to Huber Baniecki! Find more examples of how to use new plots here.