ML nad Wisłą

28 maja odbędzie się pierwsze Warszawsko-Krakowskie Spotkanie Naukowe dotyczące uczenia maszynowego. Wspólne seminarium grup GUM (UJ) i MI2 (UW + PW) zajmujących się Machine Learningiem. Lista pięciu planowanych referatów jest tutaj (strona będzie uzupełniana). To pierwsze spotkanie, planowane są kolejne, na zmianę w Krakowie i Warszawie. Wstęp wolny. Będzie czas na poznanie się. Zapraszamy osoby zainteresowane poważniejszymi badaniami w obszarze ML.

W marcu odbyła się Gala Konkursu Data Science Masters na najlepszą pracę magisterską z obszaru Machine Learning i Data Science. Otrzymaliśmy w konkursie 72 prace z 17 uczelni! Zwycięzcy pierwszej edycji to: Tomasz Wąs (UW), Mateusz Susik (UW), Aleksander Nosarzewski (SGH). Wyróżnienia otrzymali: Dymitr Pietrow (WUT), Agnieszka Sitko (UW), Urszula Mołdysz (PŚ). Więcej informacji o nagrodzonych pracach na tej stronie (trochę trwało jej uzupełnienie). Dziękujemy Nethone (grupa DaftCode) za ufundowanie nagród.

Z okazji 100-lecia GUS w lipcu odbędzie się II Kongres Statystyki Polskiej. Więcej informacji na tej stronie. Jeszcze przez kilka dni można zgłaszać propozycje referatów. Jest kilka bardzo ciekawych sesji, np. poświęcona statystyce polskiej, analizie danych czy danym statystycznym.

Grupa europejskich badaczy ML apeluje do UE o utworzenie ELLIS: European Lab for Learning & Intelligent Systems, badawczego instytutu uczenia maszynowego na styku akademii i biznesu. Także w naszym kraju trwają prace nad powołaniem instytutu badawczego zajmującego się analizą danych. Robocza nazwa NISAD. Osoby zainteresowane tą inicjatywą zapraszam na priv.

Ministerstwo nauki ogłosiło konkurs na drugą edycję Doktoratów Wdrożeniowych. To może być ciekawa propozycja dla świeżych absolwentów pracujących w działach badawczych firm zainteresowanych zaawansowanym ML. Do tego programu można zgłaszać się jeszcze przez miesiąc.

2 thoughts on “ML nad Wisłą”

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *