Przecinające się krzywe przeżycia

Spotkałem się ostatnio z ciekawym problemem.
Mamy dwie grupy pacjentów na dwóch różnych schematach leczenia i chcemy porównać ich dalsze losy, a konkretnie krzywe niepowodzenia leczenia (prawdopodobieństwo zgonu/wznowy).
Na pierwszy rzut oka klasyczna analiza przeżycia, test log-rank i po sprawie.

Ale szybko okazuje się, że krzywe przeżycia się przecinają, co więcej oczekiwać można tego po wcześniejszej rozmowie z lekarzem. Jeden schemat leczenia jest bardziej agresywny więc może prowadzić do gorszych rokowań krótkookresowych, ale lepszych w dalszej perspektywie.

Klasyczny test dla krzywych przeżycia oparty jest o odległość pomiędzy krzywymi, mierzoną jest jako ważona suma kwadratów odległości w poszczególnych punktach. Ale gdy krzywe się przecinają to taki test ma niską moc i nie ma sensu go stosować.

A więc co robić?
Ciekawe studium symulacyjne porównujące różne podejścia do testowania przecinających się krzywych zostało opublikowane dwa lata temu w Plos One (!).
Okazuje się, że dobrze sprawdza się rodzina testów Renyi, która jest oparta o supremum ważonych odległości pomiędzy krzywymi przeżycia.
W R te testy są zaimplementowane w pakiecie survMisc w funkcji comp. Jest to znacznie mocniejszy test dla przecinających się krzywych.

A przy okazji, okazuje się, że zmianę w hazardach w rozpatrywanym problemie dobrze ilustrują reszty Schonefelda. Poniższy wykres pokazuje, że hazard w jednej grupie jest znacznie wyższy do 12 miesiąca, a później gorsze losy czekają pacjentów drugiej grupy.

Oba wykresy wykonane pakietem survminer.

Opisy osi usunąłem ponieważ wyniki tych analiz jeszcze nie są opublikowane, ale też nazwy nie mają większego znaczenia.

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *